
Apple Business BASIC
Reference Manual - Volume 1

Notice
Apple Computer reserves the right to make improvements in the product
described in this manual at any time and without notice.

Disclaimer of All Warranties And Liabilities
Apple Computer makes no warranties, either express or implied, with respect to
this manual or with respect to the software described in this manual, its

. quality, performance, merchantability, or fitness for any particular purpose. Apple
Computer software is sold or licensed "as is:· The entire risk as to its quality and
performance is with the buyer. Should the programs prove defective following
their purchase, the buyer (and not Apple Computer, its distributor, or its retailer)
assumes the entire cost of all necessary servicing, repair, or correction and any
incidental or consequential damages. In no event will Apple Computer be liable
for direct, indirect, incidental, or consequential damages resulting from any defect
in the software, even if Apple Computer has been advised of the possibility of
such damages. Some states do not allow the exclusion or limitation.of implied
warranties or liability for incidental or consequential damages, so the above
limitation or exclusion may not apply to you.

This manual is copyrighted. All rights are reserved. This document may not, in
whole or part, be copied, photocopied, reproduced, translated or redu.ced to any
electronic medium or machine readable form without prior consent, in writing,
from Apple Computer.

© 1981 by Apple Computer
10260 Bandley Drive
Cupertino, California 95014
(408) 996-1010

The word Apple and the Apple logo are registered trademarks of Apple Computer.

Reorder Apple Product #A3L0002

Preface vi

1 Introduction to Apple Business BASIC 1

1 Introduction
10 Controlling Text On the Screen
17 System and Utility Statements
18 Loading and Saving Programs
20 Starting and Stopping Programs
23 Handling Large Programs
25 Debugging Programs
26 Special Keys
28 Automatic Execution

2 Tools of Your Trade 38

38 Introduction
39 Variable Types
43 Reserved Words and Variables
44 Arrays
47 Statements
48 Expressions
54 Functions
56 Business BASIC Functions
57 String Functions
65 Numeric Functions
70 Defining Your Own Functions

3 Apple Business BASIC I /0 74

74 Introduction
75 Displaying Text On The Screen
78 Entering Data
82 Storing Data Within Your Program
86 Formatting Information

4 Controlling Program Execution 102

102 Assignment Statements
104 Remark Statements
105 Branching
110 Looping
115 Subroutines
118 Computed Branching
121 Handling Errors
124 Error-recovery Strategies

5 File 1/0 128

128 Introduction
128 Filenames
130 Creating Files
132 Manipulating Files
136 File Types
136 Opening and Closing Files
139 Accessing Files
142 Data Files
145 Sequential Access
150 Random Access
153 File Functions and Statements
156 File 1/0 Example

6 External Routines 101

101 INVOKE
162 PERFORM
164 EXFN.
165 EXFN%.

7 Apple Ill Business BASIC References 166

Appendices

A ASCII Character Codes 220

B Errors 226

C Variable Maps 236

D Alphabetical List of Reserved Words 238

E Space Savers 242

F Memory Usage 246

G Speeding Program Execution 250

H Summary of Apple Business BASIC 252

I Using the Graphics lnvokable Module 212

274 Overview of the Graphics Display
277 Overview of the Graphics Routines
281 Details of the Graphics Routines
288 Viewports and Colors
298 Moves
301 Screen Information Functions
303 Displaying Text and Other Images
308 Preserving Your Graphics
309 After Graphics
312 Graphics in Display Mode 1
314 Creating and Storing a Bit Array
· 321 Direct Control of the Screen
324 Summary

Index 330

This book is intended to provide you with the information you need to
learn and use the Apple Business BASIC programming language. If
you are new to the world of computers, or are not familiar with one or
more other dialects of BASIC, you should first study a good textbook
on elementary programming. You should also read the Apple Ill
Owner's Guide that is packed with your computer before reading this
manual.

The material in this manual is presented primarily for programmers
with some experience, but enough examples, simplified procedures,
and descriptions are included to enable you to use it effectively even
if you are a beginner.

To make the use of this manual easier for you, we have divided it into
two volumes. After you have become familiar with the material in the
first part, you can quickly refer to details of Business BASIC as found
in the reference portion of the manual, which is contained in the
second volume. Paging is continuous through the manual, and the

· index is placed in the reference volume.

When important terms are first introduced in this manual, they are
italicized. Three special symbols are used in this book to point out
places where you should pay attention:

@ The pointing finger indicates an especially useful or
noteworthy piece of information.

@ The eye means "watch out!" It indicates a description
of a special feature to which you should be alert.

~ The stop sign means that in the situation described,
you should be especially cautious, because if you do
something incorrect, BASIC may not be able to
recover. You may have to restart BASIC, and this
means that you will probably lose your program.

2 Introduction
3 Starting Up
5 Immediate and Deferred Execution
6 Editing Your Program
9 Interrupting a Running Program
10 Controlling Text On the Screen
10 LIST
11 The Reserved Variables INDENT and OUTREC
12 DEL
13 WINDOW
14 TEXT
15 The Reserved Variables VPOS and HPOS
16 HOME
16 INVERSE and NORMAL
17 System and Utility Statements
17 Memory Management
17 NEW
17 CLEAR
18 The Reserved Variable FRE

18 Loading and Saving Programs
19 LOAD
19 SAVE
20 Starting and Stopping Programs
20 RUN
22 STOP
22 END
22 CONT
23 Handling Large Programs
23 CHAIN
25 Debugging Programs
25 TRACE
26 NOTRACE
26 Special Keys
27 CONTROL-C
27 CONTROL-5,6,7,8
27 RESET
28 CONTROL-RESET
28 Automatic Execution
28 EXEC
29 Deferred Immediate Statements
31 Creating Immediate Statements
33 Capturing Programs as Text Files

1
Introduction to Apple Business BASIC

Introduction
Apple Business BASIC is an extended version of the BASIC
programming language for the Apple Ill. Some of its more important
features are listed here for readers familiar with other
implementations of BASIC:

The facilities for using disk files are built in, so that programs
can easily and conveniently read and write files.

The long integer variable type provides 19-digit precision.

The PRINT USING and IMAGE statements are powerful tools
for controlling the exact format of data displayed or printed by
a BASIC program.

Variable names may be up to 64 characters long. Reserved
words are recognized only when they are set off either by
spaces or characters other than letters or digits. This allows
you to use reserved words embedded in variable names
without causing problems.

An optional ELSE clause has been added to the IF. .. THEN
statement.

The input/output (1/0) system allows direct control of a wide
variety of plug-in peripheral devices, as well as the use of
assembly language routines and graphics facilities.

Starting Up
We recommend that you have Apple Business BASIC running while
you read this manual, so that you can try out on your computer
anything that the manual describes or suggests.

Follow these steps to start up your system:

1. Begin with the system plugged in and the power switch off.

2. Insert the Apple Business BASIC diskette into the disk drive
built into the front of your Apple. Hold the diskette in your
right hand with the label facing up and your thumb on it. The
label should be nearest the edge of the diskette closest to
you. Now insert the diskette into the horizontal slot in the
drive without rotating your hand. Push it very gently into the
slot until it stops.

3. Turn the power switch on. The system will start up, the drive's
in use light will come on, and the disk drive will whir and
buzz. Carefully close the disk drive door.

4. Soon you will see a prompt line at the top of ttie screen,
giving the version of Business BASIC that you are running,
and below it a right parenthesis character [)] at the left
margin of the video display screen, with a cursor to its right.
Apple Business BASIC is up and running.

5. See your Apple Ill Owner's Guide if you have difficulty
starting up your Apple.

If there is a BASIC program file named "Hello" on the diskette
that you use when starting up your Apple (as there is on the
Apple Business BASIC diskette), that program will
automatically be executed when the system starts. This feature
lets you develop "turnkey" systems easily by just naming your
working program "Hello."

The right parenthesis is BASIC's prompt character. When it appears
on the screen, it means that BASIC is waiting for you to type
something. The cursor shows you where the next character that you
type will appear on the screen.

Entering Statements
Now that you have the prompt character and the cursor on the
screen, you are ready to begin using the Apple Business BASIC
language. Type

)PRINT "Hi there"

and press the key marked RETURN. Your Apple will display the words

Hi there
)

followed by the prompt and the cursor again. If you misspell the
reserved word PRINT you will get this error message:

?SYNTAX ERROR

The ~grd iWta* refers to the rules for constructing statements in the
BAS C language. Sometimes you will enter a statement that is
syntactically correct, but does not say quite what you intended it to
say. BASIC will execute the statement exactly as you typed it. For
example, if you forget either the first quotation mark or both
quotation marks, your Apple will display a zero (the value of the
variable Hi):

0
)

The statement

)PRINT "Hi there"

is an instruction to your Apple telling it to display all of the characters
between the quotation marks, in this case a salutation. You can use
the PRINT statement' to tell your Apple to display any message you
wish.

Don't press the RETURN key if you are typing a long statement and
getting close to the right margin of the display screen. When you
reach the end of the screen line, BASIC automatically breaks the

statement for you and you find yourself typing on the next screen
line. Pressing the RETURN key ends the statement, and BASIC will try
to understand what you typed, and carry out your instructions.

Immediate and Deferred Execution
The PRINT statement example we tried earlier was executed
immediately after you pressed the RETURN key. This is called
immediate execution. Now type

)10 PRINT "Hi again"

and press RETURN. Nothing happens on the screen except that
BASIC again displays its prompt. Now type

)RUN

After you press the RETURN key, you should see this on the screen:

Hi again
)

BASIC has executed the PRINT statement. When you typed the PRINT
statement with a number in front of it, BASIC stored the statement in
memory as a one-statement program. When you typed the RUN
statement, it was executed immediately, since it didn't have a number.
RUN is a statement that tells BASIC to execute whatever program is
currently stored in memory. Such execution of statements previously
stored in memory is called deferred execution.

Statements without line numbers are executed immediately, and
forgotten as soon as they are executed. Statements with line
numbers are not executed immediately, but remain in your Apple's
memory and can be executed again and again with the RUN
statement. A deferred statement and the line number preceding it are
often referred to as a program fine. For example, consider

)30 PRINT "Bye now!"

Line 30 comprises both the PRINT statement and the line number 30.

Editing Your Program
Let's add another line to the program. Type

)20 PRINT "Hi yet again"

and press the RETURN key. Then type another RUN statement, and
press RETURN once again:

)RUN
Hi again
Hi yet again
)

You can see that the statement at line number 10 is executed before
the statement at line number 20. When BASIC executes statements in
a program, it always executes them in the order of their line numbers,
unless the program statements tell it to alter that sequence. Note that
the order in which statements are executed is not necessarily the
order in which you typed them.

By the way, you must surely have gotten the message by now that
every program line you enter must be ended by pressing the
RETURN key. From now on we'll stop repeating that reminder every
time we enter a statement.

If you make a syntax error in typing a statement with a line number,
BASIC won't detect the error until you type

)RUN

and it tries to execute the statement. For example, if you enter the
statement

)15 PRITN "HELLO"

into your program, BASIC won't find the spelling error until it

attempts to execute line 15. At that point, execution stops and BASIC
displays the message

?SYNTAX ERROR IN 15
)

1. Backspace over the error with the left-arrow key, and retype.

2. Use the cursor-move keys.

3. Cancel the entire program line you are typing. Press the X
key while holding down the key marked CONTROL. This
procedure is called "CONTROL-X." BASIC displays a
backslash (\), and returns the cursor to the beginning of the
next screen line. You can now retype the entire program line.
The line you were typing before you typed the CONTROL-X
will not be stored in memory.

To modify a line you have already typed into a program, simply type a
new line with the same line number. For example, if you type

)20 PRINT "Hi another time"

this new version of line 20 replaces the old one. If you want tg delwe
a stored statement altogether, type just its line number, then press
RETURN.

In the example given above (where PRINTwas spelled PRITN), you
can use the sursgr-mgye §~to correct the spelling. First press the
ESQAPE key. This leaves the cursor.wjth a "+"i,p. its center, telling you
that you are in cursor-move mode. Use the up-arrow key to move the
cursor up to the line that you want to correct, and then either the left­
or right-arrow keys to place the cursor on the first character in the
line.

Press the ESCAPE key to exit cursor-move mode and use the right­
arrow key to read in the characters in the line. Stop when you get to
the first wrong character (the T) and type in NT, correcting the
spelling of PRINT, and use the right-arrow key again until you reach
the end of the line. When you press the RETURN key, the entire line
will be accepted with your correction.

Using the cursor-move keys becomes more useful as your lines
become longer or involve more complicated information, since you
will tend to make more errors as you retype longer lines.

It's a good idea to leave room for additional line numbers between
the numbers you use when you write a program. That way, if you want
to insert a new program line between two lines already in memory,
you can use one of the unused numbers. For example, if you have
entered two lines numbered 15 and 20, you can put a new line
between them by giving it the number 18. Line numbers must be
within the range 0 to 63999, or a

?SYNTAX ERROR

message will be displayed on the screen.

If you want to see your program as currently stored in memory, type

)LIST

All statements in memory will be displayed on your screen in order of
their line numbers.

If you want to get rid of all stored statements to start a new program,
type

)NEW

Now if you type LIST, you will see that the program previously stored
in memory is gone.

You can easily edit large Business BASIC programs with the Apple Ill
Pascal Editor. Refer to the Apple Ill Pascal Introduction, Filer, and
Editor manual for details about this.

Converting programs into text files to be edited by the Apple Ill
Pascal Editor is described at the end of this chapter under
CAPTURING PROGRAMS AS TEXT FILES.

Interrupting a Running Program
Now try typing this program:

10 PRINT "This is the first line"
20 PRINT "This is the second line"
30 GOTO 10

The purpose of this example is to show you how to stop a program
that won't stop itself. The GOTO statement on line 30 tells BASIC to
go to line 10 and proceed from there, but then BASIC finds the GOTO
statement again in line 30 and goes back to 10. This happens over
and over again. Try it by typing RUN.

When you get tired of seeing

This is the first line
This is the second line

?BREAK IN 20

where 20 is the line number of the statement that was being executed
when you typed the CONTROL-C.

The program given above could have been written on a single line, if
you had wanted it that way. For example,

10 PRINT "This is the first line" : PRINT "This is the
second line" : GOTO 10

This has the advantage of using somewhat less space in memory, but
also is harder to read and understand. For that reason alone, the use
of multiple statements per line should be considered an emergency
measure for use only in extreme circumstances.

You are now acquainted with the simplest forms of several BASIC
statements: PRINT, RUN, NEW, LIST, and GOTO, as well as CONTROL­
C and CONTROL-X. You know what immediate and deferred
execution are, and you know some simple ways to modify stored
programs and correct typographical errors. (Take a cookie break,
you've earned it.)

Controlling Text on the Screen
This section explains the statements that allow you to control the way
Apple Business BASIC displays things on the screen.

LIST
LIST displays programs stored in memory by line number. You can
,bait a lj§'i?@ +emmrarily bf typipg QQNIRQb-7 (hold down tHe
CONTROL key and press on the numeric keypad). The listing
resumes when you type a second CONTROL-?. Typing CONTROL-C
terminates the listing altogether.

To list an entire program, type

)LIST

You can also specify a particular range of lines to be listed. The
statement

)LIST 20

lists only line 20, if it exists. The statement

)LIST 33TO

lists from line 33 to the end of the program.

)LIST TO 47

lists from the beginning of the program to line 47.

)LIST 23 TO 341

lists from line 23 to line 341, inclusive. In all the examples given, if the
first line number doesn't exist, the next greater existing line number
is used; if the second line number doesn't exist, the next smaller
existing line number is used. If the two line numbers are the same,
only one line is listed (assuming that it exists). If the first line number
is greater than the second, nothing is listed at all.

l!:1 place of the reserved word TO, you can substitute a comma or a
hyphen: -

)LIST 52,89
)LIST 38-725

The Reserved Variables INDENT a'nd OUTREC
You can set the number of spaces to be used to indent FOR..NEXT
loops (described in the chapter Controlling Program Execution) in
your program listings. This is normally set to two spaces, but can be
changed by giving a new value to the modifiable reserved variable
INDENT. For example,

)LIST
10 REM Count, and print, 50 numbers.
20 FOR X=1 TO 50
30 PRINTX
40 NEXTX

.. 50 END

Would look somewhat different if you changed the value of INDENT
to 5, like this:

)INDENT=5
)LIST
10 REM Count, and print, 50 numbers.
20 FOR X=1 TO 50
30 PRINTX
40 NEXTX
SO END

The maximum length of lines output by the LIST command is set by
the value of OUTREC. If you have a printer that lacks automatic wrap­
around, such as a Qume, you can set OUTREC to avoid having to
watch the printer cheerfully running off the right side of the paper
onto the platen.

As soon as the printer column position equals the value of OUTREC,
BASIC sends a RETURN and LINEFEED to the printer to continue
printing at the next line.

®
DEL

If the value of OUTREC is less than the value of
INDENT, a ?RANGE ERROR message is given.

DEL deletes lines from the program stored in memory. You can
specify either a single line or a range of lines to be deleted. The
statement

)DEL48TO 52

deletes the range of lines from line 48 to line 52, inclusive. It is
equivalent to typing

)48
)49
)50
)51
)52

since typing a program line number followed with a return deletes
that line from the program in memory.

If the first line number (line 48 in the example) doesn't exist, the next
greater existing line number is used. If the second line number (line
52 in the example) doesn't exist, the next smaller existing line number
is used. The statement

)DEL 163

deletes only line 163, if it exists.

In place of the reserved word TO, you can substitute a comma or a
hyphen:

)DEL 73, 193
)DEL 996-1010

Attempting to delete the line currently being executed in a running
program or any smaller numbered lines causes a

?RANGE ERROR

message to be displayed. For instance, either

)300 DEL 245

or

)500 DELSOO

will cause an error. Unlike LIST, DEL requires that both the starting
and ending line numbers be given if you want to delete more than
one line of a program.

Window
WINDOW allows you to set the position and size of the text window
where text is displayed on the screen. Think of the text window as a
rectangle within the total screen area limiting the area on the screen

where BASIC may display text. Here is an example of a WINDOW
statement:

)WINDOW 37,9TO 44,16

In the example above, the first number of each pair is the column on
the screen, and the second number of each pair is the row number.

The first pair of numbers specify the horizontal and vertical
coordinates of the upper left corner of the text window, and the
second pair specify the coordinates of the lower right corner. The
example above will create a text window 8 columns wide and 8
scre~m lines high, in the center of your screen. When a WINDOW
statement is executed, the cursor moves to the lower left corner of
the specified window.

WINDOW statement coordinates may be specified by any arithmetic
expression. Each of the four expressions must have a value within ·
the range 0 to 255, or an

?ILLEGAL QUANTITY ERROR

message will be displayed. Expressions with a value of 0 are treated
as though they had a value of 1. If the values of the expressions
specified in a WINDOW statement would cause the size of the
window to exceed that of the screen, the window is truncated to fit.
For example, if the text window is set wider than the 8Q..column
screen width, it will be truncated to 80 columns. Likewise, 24 screen
lines of text will fill the screen, so setting the window higher than 24
lines causes truncation of any text that would have been displayed
below the 24th screen line.

The parameter values used by WINDOW are assumed to be relative to
the limits of the default screen of 80 by 24 lines.

TEXT
The TEXT statement sets the display screen to the usual full-screen
text mode, canceling any other text or graphics mode in use. All
graphics being displayed (except text characters) is cleared from the

screen, the cursor is moved to the left hand column of the next line
of the screen, and a prompt character is displayed.

TEXT also resets the text window to full screen size (24 screen lines
by 80 columns), equivalent to

)WINDOW 1,1 TO 80,24

The Reserved Variables VPOS and HPOS
You can control the position of the cursor within the text window by
assigning numerical values to the reserved variables VPOS (Vertical
POSition) and HPOS (Horizontal POSition).

Assigning a value to VPOS moves the cursor vertically to the
corresponding screen line within the current text window. Assigning
a value to HPOS moves the cursor to the corresponding horizontal
character position on the current screen line, relative to the text
window.

The top screen line within the text window is line 1 and the number of
the bottom screen line is equivalent to the height of
the window. When VPOS is used to move the cursor vertically, the
cursor's horizontal position on the screen is not affected.

The leftmost character position within the window is column 1 and
the rightmost is equivalent in value to the width of the window. When
HPOS is used to move the cursor horizontally, the cursor's vertical
position is not affected.

Values assigned to VPOS and HPOS can be specified by any integer
or real arithmetic expression. For example, the statements

)VPOS=8
)HPOS=6

will move the cursor to the sixth character position on the eighth
screen line from the top of the text window. You can find the current

position of the cursor by referring to the values of VPOS and HPOS.
For instance,

)PRINTVROS

displays the current vertical position of the cursor on the screen,
relative to the upper margin of the text window.

)PRINT HPOS

causes the current horizontal position of the cursor, relative to the
left margin of the window, to be displayed.

VP0§ apd H~S perform absolute moves within the text window, and
~an not move the cursor to a position outside of the text window.
Values greater than the height or width of the text window are treated
as equal to the largest possible values within the window. Assigning
values greater than the height of the text window to VPOS, causes
the cursor to move to the bottom screen line within the window.
Assigning values greater than the width of the text window to HPOS
causes the cursor to move to the right margin of the window. The
value 0 is converted to the value 1. Assigning values outside the
range 0 to 255 to eitherVPOS or HPOS causes the message:

?ILLEGAL QUANTITY ERROR

HOME
~ clears all text within the current text window and moves the
cursor to the upper left corner of the window.

INVERSE and NORMAL
INVERSE sets all subsequent display to black letters on a white
background. NORMAL sets the display to white letters on a black
background. Characters on the screen before the execution of the
INVERSE or NORMAL statement are not affected.

Type this program, and then run it:

)10 INVERSE
)20 PRINT "Inverse"
)30 NORMAL
)40 PRINT "Normal"
)50 GOTO 10

Use CONTROL-C to stop execution of the program.

INVERSE and NORMAL have no effect on characters read from or
written to files.

System and Utility Statements
The statements described in this section allow you to transfer
programs between memory and disks, erase programs from memory,
save the contents of memory as a program, and start and stop
programs. Other statements help you debug programs, determine the
size of a program in memory, and perform other tasks.

Memory Management
One of the most important resources at your command when
programming is the Apple's memory. Several tools to help you to
more efficiently use memory are described below.

NEW

NEW erases the current program and all its associated variables from
4 memory, and closes all open files except a text file being executed

(see the EXEC statement in the Section AUTOMATIC EXECUTION).
There are no options associated with NEW.

CLEAR

CLEAR sets all numeric variables to zero, all strings variables to null
slrings, clears all BASIC pointers and stacks, and closes all open disk
files except a file being executed. There are no options associated
with CLEAR.

If a large program (or one with many variables) has
just been run and halted, trying to add additional
statements may give an

?OUT OF MEMORY ERROR

caused by variables left over from the previous time
the program ran. CLEAR will allow more statements
to be added. (It will also, of course delete the old
variables.)

Th.e Reserved Variable FRE

FRE' is a reserv~d variable storing the amount of remaining available
memory, measured in bytes. Try typing

)NEW
)PRINT FRE
66556
)

In this case, you have about 66K bytes of memory.

FRE allows you to check on the amount of space remaining in
memory when you are doing things like adding to an existing
program, checking the actual size of a program, or trying to increase
the size of an array. See the Chapter VARIABLES AND CONSTANTS,
and the Appendices VARIABLE MAPS and SPACE SAVERS, for
further information on more efficiently using memory space.

Loading and Saving Programs
Programs can be stored in the form of files on disk. The statements
described in this section allow you to move programs between
memory and diskette files. Before you read the rest of this chapter, or
the chapter FILE 1/0, you should be familiar with files, pathnames,
local filenames, directories, and prefixes as described in theApple Ill
Owner's Guide.

LOAD
LOAD reads a specified BASIC program from a disk file, and stores it
in memory. The pathname of the program to be loaded must follow
the reserved word LOAD (see the chapter FILE 1/0 for an explanation
of pathnames). For example, to load a program named Countdown
on a disk named Shuttle, use

)LOAD /Shuttle/Countdown

When the program is loaded, its numeric variables are all set to zero,
string variables are set to null strings, and all files are closed, with the
exception of any EXEC file being executed. Any existing program is
cleared from memory.

If the program specified does not exist on the disk, the

?FILE NOT FOUND ERROR

message is displayed.

Attempting to load a file other than a BASIC program causes the
message

?TYPE MISMATCH ERROR

to be displayed.

SAVE
The SAVE statement writes a copy of the program currently in
memory to a diskette file. You must specify the file to be saved by
following the reserved word SAVE with a pathname, for example:

)SAVE .D2/Inventory

If there is already a BASIC program with the same pathname on the

disk, it will be overwritten and lost. If a locked BASIC program with
the same name is on the disk, you will get a.

?FILE LOCKED ERROR

message. If a file having the specified name that is not a BASIC
program is on the diskette, a

?TYPE MISMATCH ERROR

message will be displayed.

Starting and Stopping Programs
If things get out of hand while your program is running (or the bomb
squad happens to make a personal visit), you might want to stop a
program while it is running and later restart the stopped program.
The statements that allow you to do these things are described below.

RUN
RUN is used to start running a program. When a RUN statement is
entered, BASIC clears all variables, closes all open files except
executing text files, and begins to execute the program in memory
beginning with its smallest line number.

If there is no program in memory, the cursor drops to the next screen
line, and redisplays the prompt. For example, to execute whatever
program is currently in memory, type

)RUN

(as you well know by now). If you do not want execution to begin at
the smallest line number, but at some other line (for instance line
205), use

)RUN 205

and execution begins at line 205. If you specify a non-existent line
number, the

?UNDEF'D STATEMENT ERROR

message appears.

If you want to run a program that is not stored in memory, but is in a
disk file, you can specify the program to be run by giving its
pathname. For instance, to RUN the program stored in a file named
ASSETS, use

)RUN ASSETS

And if you wanted to begin execution at line 7254, use

)RUN ASSETS, 7254

If the file you specify is not found after searching the disk, the

?FILE NOT FOUND ERROR

message is given. If the file is found, the current program and all of
its variables are erased from memory, and all open files (except an
executing text file) are closed. The program specified in the RUN
statement is then stored in memory and BASIC begins executing it at
either the lowest numbered line or at the specified line.

The RUN statement is the last statement executed in any line. For
instance, in this line:

)IF X= 1 THEN RUN 1000: 1=1

the variable I will never be assigned the value 1 if X equals 1.

Trying to run a program that is not written in BASIC generates a

?TYPE MISMATCH ERROR

message.

STOP
STOP halts execution of a program, closes any executing text file,
returns BASIC to immediate execution, resets the output file to the
console, and redisplays the prompt. STOP displays the message, for
example

?BREAK IN 8712

where 8712 is the line number of the program line containing the
STOP statement. The program in memory is not altered in any way.
STOP has no options associated with it.

END
END is identical to STOP except that no message is displayed when it
is executed. END has no options.

CONT
CONT causes execution of a program that has been halted by STOP,
END or CONTROL-C to be continued. The CONT statement re~
execution at the statement immediately following the one atwhich
execution was suspended, not with the first statement in the next
program line. For example,

)0 PRINT "Program Begins"
)10 END: PRINT "Back again"
)20 PRINT "Blitz"
)RUN
Program begins
)CONT
Back again
Blitz
)

CONT does not clear the program, or reset the variables in memory,
and there are no options associated with it.

CONT has no effect if there is no program in memory.

A program halted by an error may be continued. BASIC will attempt
to continue execution starting with the statement in which the error
occurred. An error made in immediate execution will not prevent a
program from being continued.

A program that has had any of its statements altered, or any new
statements added, cannot be continued. If you try, the

?CAN'T CONTINUE ERROR

message will be displayed. Variables in a program can be changed
using assignment statements in immediate execution. For example:

)10 X=4: PRINT X
)20 STOP
)30 PRINT X
)RUN
4

BREAK IN 20
)X=X+2
)CONT
6
)

® CONT is ignored when used within a program.

Handling Large Programs
Even with the large amount of memory available for Business BASIC
programs, you'll soon find ways to fill it up. This has been allowed for
with the CHAIN statement described below.

CHAIN
If a program requires more memory than is available on your Apple,
you can split the program up into smaller pieces, and execute them
individually with the CHAIN statement.

CHAIN automatically loads and runs a specified program, without
clearing the values of the variables left over from the previous
program, or closing any files the previous program had left open.
This allows variables used in one program to be used in another. The
pathname of the program to chain must follow the reserved word
CHAIN. For instance, to CHAIN to a program named Tires, use

)CHAIN Tires

If the program specified in the CHAIN statement does not exist on the
diskette, then a

?FILE NOT FOUND ERROR

message will be displayed.

Execution of the specified program begins at the smallest line
number, unless you specify otherwise. Therefore,

)CHAIN /Link/Fence, 800

causes execution to begin at line number 800 of the program named
Fence on the volume /Link.

If the chained program uses a variable that was not used in the
program executed before it, a new variable will be created; otherwise
the old variable will be used.

If the chained program dimensions an array that was dimensioned in
the previous program, a

?REDIM ERROR

occurs.

Here is an example of how you might use the CHAIN statement:

)10 PRINT "Program One"
)20 DIM A(44)
)30 CHAIN Program Two : REM Now Program Two will be
loaded and run
)RUN
Program One
Program Two speaking
0
10 PRINT "Program Two speaking"
20 PRINT A(32)
30 LIST
)

will be displayed if you have a program with the file name "Program
Two" like the one given below.

10 PRINT "Program Two speaking"
20 PRINT A(32)
30 LIST

Debugging Programs
In spite of what many people think, programming is not just for an
intellectual elite. Even though it is not difficult in principle, it is
somewhat unforgiving of various sorts of mistakes.

While Business BASIC can catch things like spelling mistakes and
faulty syntax, it is more difficult to catch more subtle sorts of errors.
The statements described in the section below are supplied to aid
you in catching these types of errors.

TRACE
TRACE functions while a program is executing and prints a"#"
followed by the number of each line of the program as it executes.
There are no options associated with TRACE.

TRACE is cancelled by NOTRACE, RUN followed by a pathname, and
by LOAD followed by a pathname. TRACE is not cancelled by CHAIN
or RUN alone.

If the program being traced displays characters on the screen, the
output ofTRACE combines with the display in unpredictable ways.
The line numbers displayed may appear around and within, or even
be overlayed with what the program displays.

® Using TRACE with a program that uses ON KBD can
be risky because TRACE slows execution to the point
that many keys can be pressed while the ON KBD
statement is being executed. This can cause a

?STACK OVERFLOW ERROR

giving a false error message for the program.

If you TRACE a program that uses the OUTPUT
statement, the line numbers listed by TRACE will be
included in the file written to by OUTPUT. (Of course,
if that's what you want.)

NOT RACE
There are no options associated with NOTRACE, it simply cancels
TRACE; the line numbers of executing program statements are not
displayed. To use it, type

)NOTRACE

Special Keys
Some keys have special functions for users of Business BASIC, as
described below.

CONTROL-C
Pressing CONTROL-C while a statement in a program is being
executed is equivalent to inserting a STOP statement immediately
after the statement. CONTROL-C can be used to stop the execution
of any statement; for instance, to terminate the display generated by
a LIST statement. It can also be used to abort a program waiting at an
INPUT statement if it is the first character typed as an input, and only
after the RETURN key is pressed.

CONTROL-C will not stop execution of a program if an ON KBD
statement has been executed, since CONTROL-Cis treated just as
any another keystroke. However, the statement(s} that ON KBD
causes to be executed can issue an END or STOP if a CONTROL-C is
pressed.

CONTROL-C will also not stop a program if an ON ERR statement has
been executed by the program, since CONTROL.:-C is interpreted as
error number 255.

Business BASIC will not recognize a CONTROL-C
while a program is waiting for an 1/0 operation to be
completed. If a printer or disk drive, for example, is
not properly connected, the program may only be
terminated by pressing CONTROL-RESET.

CONTROL-S, -6, -7, -8, -9
Control-S, -6, -7, -8, or-9 entered from the numeric keypad all perform
special functions. Please refer to the Apple Ill Owner's Guide for a
description of these functions.

RESET
Pressing the RESET button is equivalent to pressing CONTROL-C.
except that RESET clears some program stacks and pointers, and you
cannot use an ON KBD or ON ERROR statement to handle RESET.

CONTROL-RESET
Pressing the RESET button while holding down the CONTROL key
halts 1/0 operations as soon as any critical steps are finished (for
example a WRITE operation), and re-boots your Apple. CONTROL­
RESET causes an electrical reset of the entire system..P.n'l!hin~
stored in memory is lost after ressing CONTROL-RESET (inc ding
your program an I .

Automatic Execution
In addition to immediate execution, directed from the keyboard, and
deferred execution directed by programs stored in memory and
started by a RUN command, Apple Business BASIC allows operation
to be directed from a text file. This increases the power of your Apple
by allowing an application to be run without direct keyboard entry.
This is made possible by the EXEC statement.

EXEC
EXEC simulates keyboard input by reading the contents of a text file
and acting on this as though you were typing commands from the
keyboard. You use EXEC by entering the reserved word EXEC
followed by the pathname of the text file containing the commands to
be executed. For example,

)EXEC /Workdisk/Business/Gamestarter

If the file you have specified is not a textfile, the

?TYPE MISMATCH ERROR

message is displayed.

When you use EXEC, all input is expected by BASIC to come from the
text file being EXECed. This remains in force until either CONTROL-C.
a STOP statement, an error, or the end of the file is reached. When
any of these occur, control is returned to the keyboard.

EXEC automatically opens the file that it uses, but this file is not
considered by BASIC to be one of the total of ten files that may be
open at one time.

Deferred Immediate Statements

You may find that you are running some application on your Apple
made up of a series of programs running one after the other. If the
individual programs require little or no interaction from you, you
might find yourself spending time waiting for one program to finish
just to begin operation of the next one. For example,

)RUN Program1

wait... wait...

)RUN Program2

wait... wait...

)RUN Program3

and so on.

EXEC can let you begin the entire sequence and then go to lunch or
play tennis or build up your business while the computer works.
(Computers are supposed to work for us, right?) You can do this by
typing

)EXEC Runner

if Runner is a text file containing the lines

RUN Program1
RUN Program2
RUN Program3

A program like the one given below produces text files that EXEC will
run:

10 REM Program "TextfileMaker"
20 OPEN# 1 AS OUTPUT,"Runner": REM Open the text file
30 INPUT"-"; S$: REM Get a line of text
40 IF LEN(S$)=0THEN 70: REM Was only return pressed?
50 PRINT# 1; S$: REM Write the line into the file
60 GOTO 30: REM Go back and get another line
70CLOSE
SO END

TextfileMaker prints a hyphen to prompt you to enter a lines of text,
one at a time, until you type nothing but a return. The lines will be
written into a text file named Runner. If you run TextfileMaker, and
enter the following responses:

)RUN
-RUN ProgA
-RUN ProgB·
-RUN ProgC

you will make the desired EXEC file. When you type

)EXEC Runner

the contents of Runner will be output, one line at a time, exactly as
though you were entering them at the keyboard. When the line
containing RUN ProgA is output, BASIC executes that line as a RUN
statement, and runs ProgA. When ProgA is finished running, the next
line of text is output, causing ProgB to run. After ProgB finishes,
ProgC is RUN. After ProgC finishes, control returns to the keyboard.

Note that you would not get the same result by writing a program to
run the other three programs. a program containing the lines;

10 RUN "ProgA"
20 RUN "ProgB"
30 RUN "ProgC"

runs only the first program since executing the RUN statement clears
the current program in memory, thus wiping out lines 20 and 30.

EXEC accepts any legal statement in BASIC, including conditional
statements. This allows you to make the order of program execution
dependent on the result of a program's execution. For example, you
might want to run ProgB after ProgA only if the value of X as
determined by ProgA is negative. If X is positive, you might want to
run ProgC instead. To do this, your EXEC file Runner should contain
the following:

RUN ProgA
IF X<OTHEN RUN ProgB: ELSE RUN ProgC

Remember that an executing textfile replaces the
keyboard. If an INPUTor GET statement occurrs in a
program, it takes its input from the next line of the
text file, not the keyboard.

If you call an EXEC file from a program, the EXEC statement must be
followed by END, as shown below.

10A$="WoodFile"
20 EXEC A$: END
251NPUTA$
30 GOTO 10

You can reenter the calling program after the EXEC file is finished
with either RUN linenumber or GOTO linenumber as the last line of
the EXEC file.

You can force the Apple to take input from the
keyboard while a text file is executing by opening the
file .CONSOLE in your program or in the text file and
doing file input. (See the chapter on File 1/0.)

Creating Deferred Statements

When a deferred statement (one with a line number) occurs in an
executing text file, the effect is just as if you typed it on the keyboard.
The line is stored in memory, and can be run or saved.

Suppose that you have a program in memory (either one that you
have just typed, or one previous1y saved) and you execute a text file
containing deferred statements. If these statements have line
numbers different from those already in the program, the effect is to
add the new statements to the program. If any new line has the same
number as a line in the program, the new line replaces the old one.

Suppose you write a set of programs using modulo functions defined
for real variables. A modulo function takes th'e first expression and
returns the remainder after dividing first expression by the second
expression, called the "modulus." (The value returned by 7 modulo 5
is 2. 8 modulo 2.returns 0.) This is not the same as the MOD function
for long integers in Business BASIC!

If we call the real variable A and the modulus B, we can define a
function named ModB as follows:

)30 DEF FN ModB(A)=(A/B- INT(A/B))*B

Of course, "B" has to be replaced by an actual number. The result is
meaningful only if A has a positive value.

If you wanted to have Mod12, Mod15, and Mod255 functions, you
could begin each program with the ,lines

1 DEF FN Mod12(A)=(A/12- INT(A/12))*12
2 DEF FN Mod15(A)=(A/15- INT(A/15))*15
3 DEF FN Mod255(A)=(A/255- INT(A/255))*255

Instead of typing these lines into each and every program 'needing
these functions, you can create a text file called MODS that contains
them, and then enter

)EXEC MODS

A program like TextfileMaker.(shown earlier) could be used to create
a text file, called Mods to do this. Before running TextfileMaker, alter
line 20 to produce a file named Mods, instead of the one given
(producing Runner). When prompted, enter

)RUN
-1 DEF FN Mod12(A)=(N12- INT(N12))*12
-2 DEF FN Mod15(A)=(N15- INT(N15))*15
-3 DEF FN Mod255(A)=(N255- INT(N255))*255

Now whenever you want to write a program using these MOD
functions, start by typing EXEC MODS.

Any time you want to run a program needing these functions, enter
EXEC Mods before running the program. (After loading it!) The same
principle can be used whenever you have some lines to insert in
several programs. Make sure that the line numbers in the text file and
the line numbers in your program don't overlap.

Capturing Programs as Text Files
Some of your programs may contain lines that you would like to
insert in other programs. To do this, you must convert the program
into a text file to be inserted into other programs by using EXEC as
described above. Use the OUTPUT# statement to send console
output to a text file. If you then use LIST, all the output is written to
the text file.

The resulting text file may be edited with the Apple Ill Pascal Editor
(as an ascii file). After editing, you can use EXEC to read the edited.
program back into memory and (after stopping it) save the program
from memory into a program file.

Suppose you want to save lines 20 through 150 of a program sta-rting
at line 10 in a te.xt file named "Goodlines." First load the program,
then type the following:

)1 CREATE "Goodlines," TEXT
)2 OPEN# 1 AS OUTPUT, "Goodlines" :OUTPUT# 1
)3 LIST 20 TO 150
)4 CLOSE: END

Now RUN the program. This creates a text file named "Goodlines"
that you can insert into other programs with EXEC.

This little four-line program is itself a candidate for being captured as
a text file to be put into other programs, to cap~ure lines from those
programs and turn them into text files to be inserted into still other
programs. We'll modify it a little by changing the filename in Line 1 to
XXX and the line numbers in the LIST statement to YYY,ZZZ. Each
time you execute a text file to insert these lines into a program, you
can change XXX to whatever filename you want, and YYY,ZZZ to the
line numbers you want to capture. We'll call this text file "CAPTURE."
Here's a program that will create CAPTURE:

1 CREATE "XXX," TEXT : OPEN# 1 AS OUTPUT, "XXX"
2 OUTPUT# 1
3 LISTYYYTO ZZZ: PRINT
4 CLOSE: END
100 CREATE "CAPTURE," TEXT: OPEN#1 AS OUTPUT,

"CAPTURE"
1 01 OUTPUT# 1
102 LIST 1 TO 4: PRINT
103 CLOSE: END
RUN 100

The immediate execution statement RUN 100 causes the last four
lines of the program to be run, and they capture the first four lines as
a text file named CAPTURE. Whenever you want to capture lines from
a program in memory, type

)EXEC CAPTURE

change XXX, YYY, and ZZZ to whatever you want, and run it (in
memory).

38 Introduction
39 Variable Types
40 Integers
40 Long Integers
41 Reals
42 Strings
43 Reserved Words and Variables
44
45
47
48
48
49
51
52
54
56
57
57
57
57
58
59
59
60

Arrays
DIM

Statements
Expressions

Arithmetic Expressions
Arithmetic Operator Precedence
Logical Expressions
Operator Precedence

Functions
Business BASIC Functions

String Functions
LEN
STR$
VAL
CHR$
ASC
HEX$
TEN

60 LEFT$
61 RIGHT$
61 MID$
63 INSTR
64 SUB$
65 Numeric Functions
65 SIN
65 cos
65 TAN
66 ATN
66 INT
66 RND
67 SGN
68 ABS
68 SQR
68 EXP
68 LOG
69 CONV&
69 CONV
69 CONV$
70 CONV%
70 Defining Your Own Functions
70 DEF FN
71 Using a Defined Function
71 Remarks about Defining Functions

2
Tools of Your Trade

Introduction
The main function of your computer is information handling, and
Business BASIC provides you with the tools you need to do the job.
These tools are described in this chapter, and some definitions
should be presented before you jump in.

A variable is a place to store a value. It can be thought of as a "box"
that can hold a single value. Variables have limits on the types of
things they can contain: the box can contain only things of a certain
size. Also, there are certain tasks for which some variables are better
suited than others; for instance, a filing cabinet is not a suitable place
to store fruit, but a wooden crate may be.

Variables are referred to by their names. The box in the example
above might be labeled "junk"; the fruit crate could be labeled
"apples3". Both "junk" and "apples3" are legal variable names. A
variable name is a sequence of characters beginning with a letter and
followed by from 0 to 63 additional letters, digits, or periods.
Lowercase letters in variable names are considered equivalent to
their uppercase counterparts. For example, the names "junk" and
"JUNK" refer to the same variable.

Not all possible name can be used. Some words are used by
Business BASIC to refer to statements and functions of the language,
these are reserved words that may not be used as variable names.

A constant is an unchanging or fixed value. There are two kinds of
constants in BASIC, numeric constants and string constants. A
numeric constant is a value written as a number; a string constant is
any sequence of characters enclosed in quotation marks. For
example, 3.14159265 is a numeric constant; "dangle" and "463" are
string constants. Notice that the numeric constant 463 and the string
constant "463" do not represent the same value.

The rest of this chapter describes the tools that Business BASIC
provides for your use in solving your problems.

Variable Types
There are four elementary variable types in Apple Business BASIC:
integers, reals, long integers, and strings. The first three types
represent numbers of various kinds, the last type represents
sequences of characters.

The type of a variable is determined by the last character of its name:
0$Jpr jnteger. $for string apd & for lana inteper. In the absence of
any of these special trailing characters, the variable type is
considered to be real by default.

Here are examples of names of the four variable types:

Variable Name

Length
Marbles?~
Light. Years& -Myname$

•

Variable Type

real
integer
long integer
string

Variables are created when they are first used in a program. When
BASIC sees a variable name in a statement, it first checks to see if it
already has a variable with that name, a task not unlike looking
someone up in the phone book. If it finds the name, then it knows
where in memory to find the value stored in the variable Uust as
someone's name allows you to locate that person's number in the
phone book).

If BASIC doesn't find a variable matching the name already in
memory, it immediately creates a new variable. It places the new
variable name in the directory of variable names (the "phone book")
so it can be found later, then finds free space in memory to store the
value that the variable will contain. It also notes the type of the new
variable.

For numeric variables, BASIC stores the value 0 in the variable; for
string variables, it stores an empty or null string in the variable.

Integers
An integer is any positive or negative whole number without a
decimal point. Jhe numbers 3, -3, and 20000 are examples of integer
constants. Integer variable names must end with a percent sign(%).
For instance, 1% is the name of an integer variable. Integer variables
can store integer values up to five digits long, from -32768 to 32767.
Attempting to assign a value beyond this range to an integer variable
generates the message

?ILLEGAL QUANTITY ERROR

Integers are displayed without leading zeros (with a leading minus
sign if negative) followed by up to five digits without a decimal point.

Integers are useful when fractional parts of numbers are not needed.
They can also be used to speed up some types of calculations where
real numbers are not required.

Long Integers
Long integers are similar to ordinary integers, except that they may
be up to 19 digits long. They may not be mixed in arithmetic
expressions with regular integers or reals (described below). Long
integer variable names must end with an ampersand (&). A long
integer value can range from -9223372036854775808 to
9223372036854775807. Exceeding this range causes the message

?OVERFLOW ERROR

to be displayed. Entering the number -9223372036854775808 from
the keyboard will also cause the same error.

Long integers are displayed without leading zeros (with a leading
minus sign if negative) followed by up to 19 digits without a decimal
point.

Many types of financial programming could profit by using long
integers and doing all calculations in pennies. The decimal point
could be inserted later when reporting results by using the SCALE
function, described later in this manual.

Reals
A real is any positive or negative number. Unlike integers, rears may
have a fractional part. The numbers 3, 33, 3.3, -3.3, 3., -3.0, .3, and
-.3 are examples of real constants. A numeric constant with a
decimal point is always of type real, even if it has only zeros to the
right of the decimal point: for example, 3. is a real constant. However,
not all rears must have decimal points.

Rears whose absolute values are greater than or equal to .01 and less
than 999999.2 are expressed in "Conventional notation. For example,
1, + 1, -1., 3.14, 999.999, and -0.2 are all real numbers expressed in
conventional notation.

A real may also be expressed in scientific, or" " o
notation, such as 3.3E2, -3.3E4, 3.3E , or -3.3E-3. The real number
5.3E12, for example, is equal to 5.3 times 10 raised to the 12th power.
Here are examples of conventional notation vs. scientific notation.

Conventional Notation

300
320
.44
-.033
1000000000000

Scientific Notation

3E+2 = 3*(1QA2)
3.2E2 = 3.2*(1QA2)
4.4E-1 = 4.4*(1QA-1)
-3.3E-2 = 3.3*(1QA-2)
1E+12 = 1*(1QA12)

Rears are automatically expressed in scientific notation when the
absolute value of the real is less than .01, or greater than or equal to
999999.2 . A real whose absolute value is less than 2.9388E-39 is
considered equal to 0 by Business BASIC.

You can enter from the keyboard any number in E notation that is
within the legal range of reals in Business BASIC.

When BASIC displays a real, it normally displays six digits, excluding
any exponent. Any significant digits beyond the sixth are rounded off.
Leading zeros to the left of the decimal point and trailing zeros to the
right of the decimal point are not displayed. The decimal point is not
displayed if there is no non-zero fraction.

Reals must be within the range -1.7E38 to 1.7E38 or the message

?OVERFLOW ERROR

will be displayed.

Strings
A string is a sequence of characters enclosed within quotation
marks. String variable names must end with a dollar sign($). Strings
may contain from 0 characters (the null string) to 255 characters. The
number of characters in a string is referred to as its length. Strings
are not fixed in length, but may grow or shrink as necessary.

Strings must be bounded by quotation marks, but may not contain
quotation marks. For example, the statement

)PRINT "What does "FOO" mean?"

causes

)What does 0 mean?

to be printed. The quotes cause BASIC to assume that FOO is a real
variable with a value of 0, since it has not been assigned a value.

Strings may contain single quotes; the statement

)PRINT "What does 'FOO' mean?"

will not cause an error.

You might be wondering how to print quotes, since they can't be
included in strings. Try this:

)PRINT CHR$(34);"0ne small step for a man ... ";CHR$(34)

You can use the CHR$ function (described later) to output any ASCII
character. Be careful, since some of them have unexpected effects
on the console driver. A bit of experimentation would be to your
advantage, after you have read the Standard Device Drivers manual.

When a program is run, all string variables initially contain the null
string.

Reserved Words and Variables
Some variable names are not allowed because they are words having
special meanings for BASIC. One of these words is PRINT, another is
INVERSE, another is WINDOW, and so on. These words are reserved
words in BASIC; they cannot be used as variable names. For
example,

)PRINT INVERSE

causes the

?SYNTAX ERROR

message to be displayed. But

)PRINT XINVERSE

is perfectly legal.

One group of BASIC reserved words are known as reserved
variables. The reserved variables are EOF, ERR, ERRLIN, FRE, and
KBD. Your program can refer to the values of these variables, but you
cannot assign values to them. For example,

)PRINT ERRLIN

is a legitimate statement, but

)ERRLIN=50

is not.

HPOS, VPOS, INDENT, OUTREC, and PREFIX$ are modifiable
reserved variables to which you can assign values with assignment
statements (see the Chapter CONTROLLING PROGRAM
EXECUTION). e An alphabetical list of all BASIC reserved variables

appear in the appendix RESERVED WORDS.

Arrays
An array is an ordered collection of single variables, all of the same
type. The name of the whole collection, called the array name, can be
any legal variable name. The last character of the name determines
the type of all the variables in the array.

The individual variables (or elements) within an array are numbered,
starting with number 0. To refer to any element within an array, you
specify the name of the array, fbllowed by the number of the element
enclosed in parentheses. For example:

)PRINT AR(3)

displays the contents of element number 3 in the array named AR,
and

)PRINT PRICES(147)

displays the contents of element number 147 in the array named
PRICES. The numbers in parentheses following the array name are
called the array's subscript. The subscript specifies one unique
element within the array.

An array can have more than one dimension. A one-dimensional array
is just a single list of variables, one after the other in a line. The

variable name for such an array needs only one number to specify
each variable. For example, a one-dimensional array, named Do, with
six elements includes the elements

Do(O), Do(1), Do(2), Do(3), Do(4), Do(5)

Note that the largest subscript value is one less than the total number
of elements in that dimension of the array.

In a two-dimensional array two subscripts are needed to specify an
individual element. For example, a two-dimensional integer array
named D% might include the elements

D%(0,0),
D%(0,1),
D%(0,2),

D%(1,0),
D%(1,1),
D%(1 ,2),

D%(2,0),
D%(2,1),
D%(2,2)

D%(2,1) would specify the element in the third column and second
row.

An array may have three or even more dimensions. The number of
dimensions is the number of subscripts needed to specify an
individual element within the array. Here are some examples:

Array Type Dimensions Element Accessed

J(2) Real 1 Element 3
Fudge%(3,2) Integer 2 Column 4, row 3
Mumble$(7,3, 1) String 3 Column 8, row 4,

elevation 2
Frotz&(77,0) Long Integer 2 column 78, row 1

DIM
To create an array, you must first tell BASIC the maximum number of
elements and dimensions you want the array to accommodate. To do
this you use a DIM statement (for dimension). For example, the
statement

)DIM Mind%(7,2,3)

creates an array named Mind% with three dimensions, with the first
subscript ranging from 0 to 7, the second from 0 to 2, and the third
from 0 to 3. The character"%" specifies that this will be an integer
array.

Remember that the list of dimensions for all arrays begin with
subscript number 0, so the number of elements in each dimension is
always one greater than the greatest subscript value. Thus, the
number of elements in the array Mind% is equal to
(7+1)*(2+1)*(3+1) or 96.

More than one array can be defined with a single DIM statement by
separating the arrays with commas:

)DIM LightS%(78,9), Bulbs$(2,45), Lanterns&(9,0,8), LY(16)

The statement above creates an integer array named Light%, a string
array Bulbs$, a long integer array Lanterns&, and a real array LY.

Subscripts can range from 0, which is always the first element of
each dimension of the array, to a maximum value of 32767.
Subscripts may be by any integer or real expression; but the resulting
value is converted to an integer before the particular element is
actually accessed. Long integer arithmetic expressions may not be
used in subscripts, unless first converted to reals with the CONV
function described later in this chapter.

If you refer to an array before defining it with a DIM statement, BASIC
automatically creates an array having 11 elements per dimension,
with subscripts numbered from 0 to 10. For example, when the
statement

)PRINT TM$(0,0,0)

is executed, BASIC defines an arrayTM$, just as if the statement

)DIM TM$(10,10,10)

had preceded the PRINT statement. If the statement

)PRINT D&(18,LOOP5)

is executed before the array D& is defined, a

?RANGE ERROR

is displayed, because the subscript 18 is greater than the default
maximum of 10 for each dimension.

If the value of a subscript refers to either a nonexistent dimension or
a nonexistent element (one that is greater than the highest numbered
element in a given dimension), the

?BAD SUBSCRIPT ERROR

message is given. In the example below, both of the statements after
the DIM statement will cause this error.

)DIM Rea1Array(1 ,2)
)PRINT Rea1Array(1 ,3) (DIM statement did not include 3)
)PRINT Rea1Array(1, 1 ,0) (DIM statement did not create a

third dimension)

Statements
Statements can be used in either immediate or deferred execution.
Immediate statements have no line number, and are executed
immediately when entered. Deferred statements have line numbers,
and are stored in memory (as part of a program) for later execution.

A list of statements may share one line number. In this case, adjacent
statements must be separated by a colon(:). The last statement in the
list must end with a return. This is called a statement list. For
example, the following are both legal statement lists:

)TEXT: PRINT "Up": WINDOW 10,10TO 20,20: PRINT "Over"
)10TEXT: LIST: INVERSE: GOTO 10

No statement or statement list may exceed 250 characters. If a
statement or statement list should exceed 250 characters, BASIC
displays a backslash at the end of the line, and ignores the entire line.

Expressions
There are four kinds of expressions: arithmetic, long integer, string,
and logical. An expression can be a single constant or variable, or it
can be an elaborate mathematical grouping of operators and
operands. Operators are symbols representing mathematical
operations. Operands are the variables and constants that operators
work on. For example, in the expression 2 + 3 , the operands are 2
and 3 and the operator is the + symbol.

Only integers and reals may be mixed freely in expressions because
BASIC automatically converts all integers into reals before an
expression is evaluated. All operands must be reduced to a common
type before an expression can be evaluated, if you wish to mix either
long integers or strings with other types of variables and constants in
an expression. (For an explanation of type conversion functions, see
the Section on Apple Business BASIC Functions.)

Arithmetic Expressions
The operands of arithmetic expressions can be reals, integers, or
long integers. There are nine arithmetic operators:

Symbol Meaning Example Numeric Value

+ Unary plus
Unary minus

,... Exponentiation

* Multiplication
I Division

+5
-2
2 "4
4*624
5/2

+5
-2
16

MOD Modulo 7MOD5
2.5
2*
1*
11
7

DIV Integer Division 7 DIV5
+ Addition 4+7

Subtraction 9-2

*Long integer only

Arithmetic Operator Precedence
In a simple expression like

4+8/2

you can't tell whether the answer should be 6 or 8, until you know the
order (or precedence) to carry out the arithmetic. Your Apple gives
the answer as 8, because it follows the following rules of erecedence:

1. Any part of the expression enclosed in parentheses will be
computed first, according to the following rules. Sets of
parentheses grouped one inside another are evaluated from
the inside out. First the innermost set is evaluated, then the
second innermost, and so forth. For example, the expression
2 * (4 + 3) is equal to 14, while 2 * 4 + 3 = 11.

2. When the unary minus sign is used to indicate a negative
number, for example

-3+2

your Apple will first apply the minus sign to its operand. Thus
-3+2 evaluates to -1. It is perfectly legal to use the unary

minus sign, but it is always ignored as an operator. For
example, the expression

+(-4)

evaluates to -4, not +4.

3. After applying all unary plus and minus signs, your Apple
does exponentiation. The expression

4+3 "2

is evaluated by squaring 3, and then adding 4. When there are
a number of exponentiations, they are done from left to right,
so that

is evaluated by cubing 2, and then squaring the result.
Exponentiation cannot be used with long integers, or a

?TYPE MISMATCH ERROR

will be displayed.

4. After all exponentiations have been calculated, all of the
multiplication, division, MOD, and DIV, operators are done,
from left to right. These four operators have equal
precedence. For example,

24/6/2

evaluates to 2. MOD, the modulo operator, evaluates the the
long integer remainder of the division of the first operand by
the second. For example,

?MODS

evaluates to 2. Dl\1, the long integer division operator,
evaluates the integer result of the division of the first operand
by the second. For instance,

7DIV2

evaluates to 3. DIVand MOD can only be used with long
integers.

5. 't All additions and subtractions are done last, from left to right.
Addition and subtraction have equal precedence.

Logical Expressions
Logical expressions are also called relational expressions and
Boolean expressions. They are similar to arithmetic expressions, but
use different operators. Where an example of an arithmetic
expression might be 2+2, 2=2 is an example of a logical expression.
The value of the first expression is 4, while the value of the second
expression is "true," because 2 does equal 2. Likewise, the value of
the logical expression 2=3 is "false," because 2 does not equal 3.
Arithmetic expressions evaluate to numeric values, whereas logical
expressions evaluate to truth values.

Since BASIC doesn't understand the meaning of truth as such, but
only the value of numbers, true and false have been assigned the
numeric values 1 and 0, respectively. Thus 2=2 has a truth value of 1,
2=3 has a truth value of 0.

Any arithmetic expression with a non-zero value has a truth value of
1. Any arithmetic expression with a value equal to zero has a truth
value of 0. For example, this means that that 2+2, when treated as a
logical expression, has the numeric truth value of 1!

There are nine logical operators:

Symbol Meaning Example Truth Value

Equal to 3=3 True
< Less than 3<1 False
> Greater than 7>4 True
<=or=> Less than or equal to 5<=4 False
>=or=> Greater than or equal

to 8>=5 True
<>or>< Not equal to 4<>4 False
AND Conjunction SANDO True
OR Inclusive disjunction 80R3 True
NOT Negation NOT4 False

Operator Precedence
A precedence list for operators of logical expressions is given below,
listed in order of execution from highest to lowest priority. Successive
operators of the same priority are executed from left to right.

()
+-NOT

"
*I MOD DIV
+-
< > = >= = > <= = <> <>
AND
OR

Here are some additional examples of logical expressions, all true:

NOT (4=5)
(3-1) OR (NOT -4)
5<>3 AND (6 OR 4)
VPOSOR HPOS
(2+2)
-2
-(2+2)

NOTOAND 6
2* + 3/2
9.3
(3.414) * (1.707 + 3.414)
-(2.6)
3 + -(2.5+7)
3<>23444
CONV&(3) MOD CONV&(2)

Be careful when writing arithmetic expressions. The expression 3<2
is false, and the expression 2<1 is also false, but the expression
3<2<1 is "true"! (BASIC first tests the expression 3<2, and finds it
false. False has the numeric value 0. It substitutes the value of 0 for
3<2. It then tests the expression 0<1, which is true. The last truth
value found is the value assigned to the expression.)

It is possible to use logical operators in string expressions. For
example, "alpha" <"beta" is true.

The ASCII values of the strings to be compared are tested one
character at a time, and the first pair of non-identical characters
determines the ranking of the strings. (See the Appendix ASCII
CHARACTER CODES for a table of these codes and their numeric
values.) While simple comparisons of uppercase letters present no
problem, the result of comparing mixed case letters and digits is less
obvious. In every case the decision will be based on the ASCII code
values.

Here are some examples. These string logical expressions are all true:

"A''<''B"
"A"<"AP\'
"Z">"Antidisestablishmentarianism"
"Anti" <"Antidisestablishmentarianism"
"A">"O"
"a">"Pt
"="<">"
Triple comparisons, <>=, <=>,etc. are legal constructs in
Apple Business BASIC. These always force the expression to
evaluate to true. Think about it!

Functions
Most of the programs that you will write in BASIC will use a relatively
small number of "tools" to solve a large number of different
problems.

For example, many scientific and engineering problems require the
use of logarithms or trigonometric functions for their solution. You
could probably solve these with the use of tables built in to your
program, or with some equally tedious means, but Business BASIC
includes a set of tools, called functions, to make life easier.

A function takes one or more expressions, called arguments,
performs some defined operation on them and returns a single value.
The function's arguments are, with the exception of string functions
(described in the section on String Functions), arithmetic
expressions, and are always enclosed in parentheses following the
function name. The returned value is substituted for the function
name in the same way that the value of a variable is substituted for
the variable name when used by a program.

You should realize that a function is not a statement itself, but must
be used as part of a BASIC statement. Functions do no more than
return values; so statements must tell BASIC what to do with the
value returned by the function.

You can either use the functions built into Apple Business BASIC, or
you can define and use your own functions. The functions built into
BASIC perform certain standard operations such as trigonometric
functions, removing fractions from real numbers, finding the absolute
value of a number, and so on.

Values returned by functions have types, just as variables and
constants have types. All built-in string functions return strings. All
other functions return numbers of type real (except CONV% and
CONV&, which return regular integers and long integers,
respectively). You can assign a real value (returned by a function) to
an integer variable, provided it is within the range -32768 to 32767,
since reals are automatically converted to integers by BASIC for this
purpose.

For example, the INT function rounds a fractional number to the next
lowest whole number (real):

)X=-3.3: Y=7. 95
)PRINT INT(X), INT(Y)
-4 7

This is equivalent to using

)X=-4 :Y=7

When a function is included in an expression, BASIC first returns a
value for the function, and then evaluates the rest of the expression
using the returned value. For instance, you could write:

)WIDTH=*3.3
)A=5*1NT(WIDTH)+3

and BASIC treats this as

If you want to use or display the value returned by the
function, you must include statements in your
program to that effect. For example, if you want to
display the sine of e, you must first use the SIN
function, and then use a PRINT statement to display
the returned value, as given below.

)E=2.718
)PRINT SIN(E)
.411038
)

Not all functions operate on numeric arguments: some of them work
on strings. A string is a sequence of characters and can exist in three
forms: as a string constant enclosed in quotes; as the content of a
string variable (a variable whose name ends with the$ character), or
as the value of a string expression.

A string expression's operands are strings and it returns a string
value when evaluated. The only operator allowed within a string
expression is the concatenation operator, +,which joins strings
together. Here are three examples of string expressions:

Expression

Message$

Message$+"123"

"Ap"+"ple"+" Business
BASIC"

Value

Whatever has been
assigned to
MESSAGE$

Value of MESSAGE$
with "123" appended
to it.

"Apple Business
BASIC"

An expression having strings as operands but containing any
operators other than + is not a string expression, but a logical
expression. For example, the value returned by

MSG1$ > MSG2$

is not a string, but a 0 for false or a 1 for true.

A string containing zero characters is called a null string and has a
length of zero. A null string is written "",so the statement

)A$=""

assigns a null string to A$.

Business Basic Functions
The remainder of this chapter describes the built-in data­
manipulating functions of Apple Business BASIC.

String Functions
The names of BASIC string functions that return string values end
with the $ character.

Len

LEN returns an integer value equal to the length of the string
expression, in the range 0 to 255. Example:

)PRINT LEN("ABCD")
4
)B$="Farm":PRINT LEN(B$+"House")
9
)

If the string expression contains more than 255 characters, the
message

?STRING TOO LONG ERROR

is displayed.

STR$

STR$ evaluates a given arithmetic expression and returns the value
as a string. For example:

VAL

)PRINT STR$(25/3)
8.33333
)PRINT STR$(1 00000000000) +"More"
1E+1lMore
)

VAL evaluates a given string expression and returns the value as a
real or an integer number. Example:

)PRINT 1 O*VAL("1.3E4")
130000
)PRINT VAL("13" +"77")
1377
)

If any character of the string expression value evaluated is not a legal
numeric character (leading spaces are acceptable), the

?TYPE MISMATCH ERROR

message will be displayed.

If the absolute value of the number represented by the value of the
string expression is greater than 1 E38, the message

?OVERFLOW ERROR

is displayed.

If the string expression value contains more than 255 characters, the
message

?STRING TOO LONG ERROR

is displayed.

CHR$

CHR$ takes an arithmetic expression as an argument and returns a
one-character string corresponding to the ASCII value of the
evaluated arithmetic expression.

)PRINT CHR$(66.8)
c
)R$="68":PRINT CHR$(VAL(R$))
D
)

The value of the arithmetic expression is rounded to the nearest
whole number if it is a real. It must be in the range 0 to 255, or the
message

?ILLEGAL QUANTITY ERROR

is displayed. See the appendix ASCII Character Codes.

ASC

ASC returns the ASCII character code corresponding to the first
character of the given string expression. If the string expression
value is a null string, then the value -1 is returned. Example:

HEX$

)PRINT ASC("BEEP")
66
)d$="BEEP" :PRINT ASC(d$+"S")
66
)

HEX$ returns as a four-character string the hexadecimal (base 16)
equivalent of the value of the given arithmetic expression. For
example:

)PRINT HEX$(780)
030C
)PRINT HEX$(-1 024)
FCOO
)

The value of the given arithmetic expression is rounded down to the
nearest whole number if necessary. It must be in the decimal range
-65535 to +65535, otherwise the message

?ILLEGAL QUANTITY ERROR

is displayed.

TEN

TEN returns the decimal (base 1 0) equivalent of the last four
characters of the given string expression. The value returned will be
in the range -32768 to 32767. Example:

)PRINT TEN("HEXNUM 030C")
780
)PRINT TEN("CCCC")
-13108
)

The last four characters of the value of the given string expression
must represent a hexadecimal value; if not, the message

?ILLEGAL QUANTITY ERROR

is displayed.

LEFT$

LEFT$ returns a string composed of the leftmost characters of the
given string expression. The length of the string returned is defined
by an arithmetic expression that immediately follows the string
expression in the LEFT$ argument list. For example:

)PRINT LEFT$("Appleskin" ,5)
Apple
)PRINT LEFT$("Sparkling",3)
Spa
)

If the value of the arithmetic expression exceeds the length of the
string expression value, all of the characters of the string expression
value are returned.

If the string expression value contains more than 255 characters, the
message

?STRING TOO LONG ERROR

is displayed. The value of the arithmetic expression is rounded down
to the nearest whole number if necessary. It must be in the range 1 to
255, or the message

?ILLEGAL QUANTITY ERROR

is displayed.

RIGHT$

RIGHT$ returns a string composed of the rightmost characters of the
given string expression. The length of the string returned is defined
by an arithmetic expression that immediately follows the string
expression in the RIGHT$ argument list. For example:

)PRINT RIGHT$("Appleskin" +"Ware", 8)
skin Ware
)B$=RIGHT$("Fruitbat", 3) : PRINT 8$
bat
)

If the value of the arithmetic expression exceeds the length of the
string expression value, all of the characters of the string expression
value are returned.

If the string expression value contains more than 255 characters, the
message

?STRING TOO LONG ERROR

is displayed. The value of the arithmetic expression must be in the
range 1 to 255, or the message

?ILLEGAL QUANTITY ERROR

is displayed.

MID$

MID$ returns a substring of a given string expression. You must
specify exactly where in the value of the string expression the

substring should begin, by following the string expression with an
arithmetic expression. For example, if you want to retrieve the
substring "keeping" froni the string "Bookkeeping", use

)PRINT MID$("Bookkeeping" ,5)

because the first character in "keeping" is the fifth character in
"Bookkeeping".

You may optionally specify the exact number of characters to be
retrieved from the string expression value, by including a second
arithmetic expression. For instance, if you only want the four­
character substring "keep" from "Bookkeeping", use

)PRINT MID$(" Bookkeeping" ,5,4)

because "keep" is four characters in length.

If the value of the first arithmetic expression exceeds the length of
the string expression value, then a null string is returned. If the value
of the second arithmetic expression specifies a greater number of
characters to be retrieved from the string expression value than exist,
all of the characters from the position specified by the value of the
first arithmetic expression to the end of the value of the string
expression are returned. For example,

)PRINT MID$(A$,255,255)

will display one character if the length of A$ is equal to 255;
otherwise a null string is displayed.

If the string expression value contains more than 255 characters, the
message

?STRING TOO LONG ERROR

is displayed. If the value of either arithmetic expression is outside the
range 1 to 255, then the message

?ILLEGAL QUANTITY ERROR

is displayed.

Try to figure out what the following program will do, and then run it:

15 A$="ABCD"
25 FOR Loop1 = 1 TO 4
35 FOR Loop2 = 1 TO 4
45 PRINT MID$(A$,Loop1 ,Loop2)
55 NEXT Loop2, Loop1

Were you right?

INSTR

INSTR returns the position of the beginning of a specified substring
within a given string. For instance, if you want to know where the
substring "ai" is in the string "Rain in Spain on the plain", use

)PRINT INSTR("Rain in Spain on the Plain", "ai")
2
)

The first occurrence of "ai" is at character position 2. The substring
can be the value of any string expression. Note that "ai" occurs at
two other places within the string. To find their positions, you must
include an optional arithmetic expression after the string expression
to begin the string search at a position other than its first character.
For example:

)PRINT INSTR("Rain in Spain on the plain", "ai", 9)
11
)

The arithmetic expression (9 in the example), specifies the character
position at which the search should begin. If no the arithmetic
expression is specified, the search begins with the first character
position of the string expression. If the substring is not found within
the string expression then the value 0 is returned.

If the arithmetic expression is greater than the length of the string
expression or less than 1, then the

?ILLEGAL QUANTITY ERROR

message is displayed.

SUB$

SUB$ lets you replace any part of a string with a specified substring.
The string to be changed can be any string variable, and the
substring may be the value of any string expression. You must specify
the first character in the string to be changed, by following the string
with an arithmetic expression. For instance

)F$="Hardware": SUB$(F$,1)="Soft" :PRINT F$
Software
)

In this example the new string (Soft) replaces part of the string
(Hardware) contained in the string variable F$. The replacement
begins at the first character of F$, and continues until all the
characters of the substring "Soft" have been placed in their new
home.

You may optionally include a second arithmetic expression to specify
the number of characters in the substring to be used in changing the
original string. For example

)F$="Hardware": B$="Soft": SUB$(F$,1,2)=B$: PRINT F$
Sordware
)

Additional examples:

)A$="ABCDEFG":B$=A$:C$=B$:D$=C$:E$=D$:F$=E$
)SUB$(A$,3)= "**":PRINT A$
AB**EFG
)SUB$(B$,3,1)="**":PRINT B$
AB*DEFG
)SUB$(C$,3,100)="**":PRINT C$
AB**EFG
)SUB$(D$,3)="************":PRINT 0$

AB************
)SUB$(E$,3,9)="*********":PRINT E$
AB*********
)SUB$(F$,3,2)="*********":PRINT F$
AB**EFG

Numeric Functions
Numeric functions may be used in either immediate or deferred
execution. The argument to all numeric functions must be an
arithmetic expression.

All floating-point arithmetic in Business BASIC is done with 32-bit
precision, and this sets limits on the accuracy of the results returned
by numeric functions. For most work the error generated will not be a
problem (or even detectable!), but you should be aware that there is
a limit.

SIN

Returns the sine of an angle given in radians. For example,

cos

)PRINT SIN(2.718)
.411038
)

Returns the cosine of an angle given in radians. For instance,

TAN

)PRINT COS(1.571)
-2.03673E-04

)

Returns the tangent of an angle given in radians. For example,

)PRINTTAN(3.141)
-s.92653E-04

)

ATN

Returns the arctangent, in radians, of the given argument. The value
returned represents an angle in the range -pi/2 to +pi/2 radians. For
instance,

/NT

)PRINT ATN(.3456)
.33275
)

Returns the largest whole number value less than or equal to the
argument value. For example,

)PRINT INT(3.3)
3
)X =1NT(-3.3) : PRINT X
-4

)

Notice that we said "whole number" in the last sentence, and
deliberately avoided the term "integer". This is because the INT
function actually returns a real number.

RND

Returns a random real positive number less than 1.

RND generates a new random number each time it is used if the
argument value is greater than zero.

If the argument value is negative, RND generates the same random
number each time it is used with the same argument. If a given
negative argument is used to generate a random number, then
subsequent random numbers generated with non-negative
arguments will follow the same sequence each time. A different
random sequence is initialized by each different negative argument.
This is particularly helpful in debugging programs that use RND.

If the argument value is zero, RND returns the most recent previous
random number generated (the CLEAR and NEW statements do not
affect this). Sometimes this is easier than assigning the last random
number to a variable in order to save it. For example,

)10 INPUT X: PRINT RND(X);" ";RND(X);" ";RND(X): GOTO
10
)RUN
?3
.73643.21479.53754
?3
.23458.65986.54193
? -4
.95754.95754.95754
?0
.95754.95754.95754
?
?BREAK IN 10
)

To get a random whole number, for example, between 50 and 100
inclusive, combine the INTand RND functions in one expression:

)PRINT INT(RND(8)*51)+50

SGN

Returns -1 if the argument value is negative, returns 0 if the value of
the argument equals 0, and returns 1 if the argument value is
positive. For instance,

)PRINT SGN(-234)
-1

)PRINT SGN(2496 +234)
1
)PRINT SGN(5E4-5E4)
0
)

ABS
Returns the absolute value of the argument; in other words, the value
of the argument if it is positive, 0 if the value is zero, and the negative
of the argument value if it is negative. For example,

SQR

)PRINT ABS(345)
345
)PRINT ABS(24-363)
339

Returns the positive square root of the argument value. For example,

EXP

)PRINT SQR(3 2 +4 2)
5
)

Raises e (to 6 places, e =2.718282) to the power indicated by the
argument value. For example,

LOG

)PRINT EXP(3)
20.0855
)

Returns the natural (base e) logarithm of the argument value. For
instance,

)PRINT LOG(20.0855)
3
)

CONV&

Evaluates the given argument, and returns a long integer value. For
example,

)PRINT CONV&(2178-7954)
-5776

)PRINT CONV&("4.214")
4
)

If the argument is a string, then the effect is the same as using VAL
followed by CONV& (see the chapter STRINGS AND STRING
FUNCTIONS for an explanation of the VAL functon). The value
returned must be within the range 922337203685775807 to
-9223372036854775808 (-9223372036854775807 from the

keyboard), or a

?OVERFLOW ERROR

message is displayed.

CONV

Evaluates the argument, and returns a real value. The value may be
assigned to a regular integer. The conversion from real to integer is
automatic in the latter case. If CONV is used with a string expression,
the effect is the same as with the VAL function. For instance,

)G& =234234 : H& =523523 : PRINT CONV(H&-G&)
289289
)

CONV$
Evaluates the given expression, and returns a string value. For
example,

)D%=345: A%=453: PRINT "a"+CONV$(D%*A%)+"z"
a156285z
)

CONV%

Evaluates the argument and returns an integer value, rounding off to
the nearest whole number. The value returned must be within the
range -32768 to 32767, or

?OVERFLOW ERROR

is displayed. For instance,

)PRINT CONV%(423.94)
424
)A& =7656 : B& =354 : PRINT CONV%(A&/B&)
21
)

Defining Your Own Functions
You may define your own functions to perform operations that are not
available from by any of the built-in functions. Once a function is
defined, it is also available in immediate execution, as long as the
defining program is still in memory, and the DEF FN statement has
been executed. A user-defined function may not be defined and used
in immediate execution without having been defined first in a
deferred execution program.

If your program defines a new function and a CHAIN
statement calls a new program, the new program may
not use the original definition. If you try to do this an
error will result.

DEFFN

The DEF FN statement is used to let the user define functions. The
name of the function and its argument must follow the reserved word
FN. The argument must be a single real variable whose name in the
function is not in any way connected to the possible use of that name
elsewhere. The statement must conclude with a defining expression.
The defining expression may be any legal arithmetic expression, and
it may contain the argument in the expression as well as any other

integer or real variables. For example, this statement defines a
function named RECIP, with X as the argument, and 1/X as the
defining arithmetic expression:

)55 DEF FN RECIP(X) = 1/X

More examples:

)10 DEF FN NEGATE(X) = -X
)20 DEF FN SWORDED.4(C) = INT(RND(3)*100)
)30 DEF FN M5BY7.MAT(DED) = DED*LOG(33)-ABS(F%)

Using a Defined Function

Once a function has been defined, it may be used anywhere that an
arithmetic expression can be used. Using a function requires that its
name be preceded with the reserved word FN. Here is an example of
how you might use the NEGATE function:

)20 A = FN NEGATE(2)

In this example, the real variable A is assigned the value -2. Here is
another example:

)30 PRINT 4 * FN NEGATE(A) * 3

If the value of A was -2, then 24 would be displayed on the screen.

Remarks About Defining Functions

The arithmetic expression used to define a function may refer to any
real or integer variable. For instance, consider the following
sequence:

)5 8=3
)10 DEF FN Foo(A)=A*C
)15 PRINT FN Foo(B) : REM displays 0 because C is
undefined

)20 C=5 : REM C now exists and equals 5.0
)25 PRINT FN Foo(B) : REM displays 15

The argument to the function need not appear in the defining
expression. In this case, the function's argument is ignored in
evaluating the expression, but the function's argument is evaluated to
make sure it is of type real, so it must be something legal. For
instance the formal argument ZILCH in the next example is real even
though it is not used in the expression:

)10 DEF FN BAZ(Zilch) =2 +2

Functions may be redefined whenever you want to.

If a function is used in a statement before being defined, the

?UNDEF'D FUNCTION ERROR

message is displayed.

Only functions of type real can be defined. Integer variables may be
used in the expression, but they are automatically converted to reals
by BASIC.

A DEF FN statement uses 1 byte per character in the function name, 2
overhead bytes, and 6 bytes for information about the function in
addition to the memory space required to store the arithmetic
expression itself.

74 Introduction
75 Displaying Text On The Screen
75 PRINT
77 TAB and SPC
78 Entering Data
78 INPUT
79 Entering Numbers
80 Quotation Marks and Commas in String Input
81 Null Strings
81 GET
82 Storing Data Within Your Program
83 DATA and READ
86 RESTORE
86 Formatting Information
87 PRINT USING and PRINT# USING
89 IMAGE
89 Output Format Specifications
90 The String Spec
91 The Literal Spec
93 Numeric Formatting
93 The Fixspec
98 The Scispec
99 The Engrspec
99 SCALE

3
Apple Business BASIC 1/0

Introduction
Most of your time spent working with the Apple Ill, especially
program development, demands that information be sent to the
Apple Ill through the keyboard and received from the screen.

This chapter describes the tools that are provided by Business BASIC
for this work.

Your Apple's keyboard and display screen are collectively termed the
console. Console input and output (or 1/0) statements allow you to
control when, where and how specific characters are displayed on
the screen or read from the keyboard.

A tab action, in the following descriptions, means
moving the cursor to the beginning of the next tab
field on the screen.

The screen is divided by five 16-character-wide tab fields. If you have
typed (or the Apple Ill has printed) a character at the last character
position of tab fields one through four, tabbing will move the cursor
to the beginning of the second field following that character.

If the text window is less than 80 characters wide, TAB may
send the cursor down one or more lines.

Displaying Text on the Screen

PRINT
PRINT is used to display text on the screen. A list of the items to be
displayed must follow the reserved word PRINT. The item list may
include any expression, comma, semicolon, TAB specification, or SPC
specification.

Expressions in PRINT statements are evaluated and their values
displayed on the screen. If there are several expressions, their values
are displayed in sequence. A PRINT statement without an item list
causes the cursor to move to the beginning of the next screen line. If
a comma separates two expressions, a tab action separates their
values on the screen; if a semicolon separates them, the second
value is displayed after the first with no intervening spaces. For
instance:

)PRINT "In" ;"divisible"; 543, 598/754.42
lndivisible543 .792662
)

Following the last expression in a PRINT statement, there may be a
semicolon, comma, or nothing. If there is nothing after the last
expression, the cursor moves to the beginning of the next screen line.
A comma causes a tab action. A semicolon leaves the cursor in the
position immediately following the last character displayed.

Here are a few examples of PRINT statements:

)PRINT "X"
X
)X&=3 : PRINT X&
3
)PRINT 10, 20
10 20
)PRINT 10;" "; 20
10 20

)A$="Apple" : PRINT A$
Apple
)A$="Johnny" : B$="Apple" : C$="seed": PRINT A$;" ";B$;C$
Johnny Appleseed

Some expressions can run together in a PRINT
statement without either commas or semicolons to
separate them. BASIC will work very hard to figure
out where one expression ends and the next one
begins. If it succeeds, the effect is the same as using
a semicolon. If it doesn't succeed, either a

?SYNTAX ERROR

appears, or wrong values are displayed. You should
use the semicolon to avoid confusion.

)PRINT A$+8$

will give

?STRING TOO LONG ERROR

message if the combined length of the two strings is
greater than 255. However, you can display the
apparent combined string using

)PRINT A$;8$

without worrying about its length.

Whep VOl' type jg a prgaram, a guestjon mark can replace tbe.
reseryed word PRINT; it U,Sts as PRINT. You don't save any memory by
using abbreviations only typing time.

TABandSPC
You can insert spaces into text displayed by a PRINT statement by
putting a TAB or SPC specification into the PRINT statement.

A TAB or SPG can be inserted immedia~ely before or after any
expression, comma, or semicolon in a PRINT statement's expression
list.

TAB and SPC are followed by an arithmetic expression enclosed in
parenthesis. The integer value of the expression following the word
TAB defines the number of spaces from the left margin of the text
window to begin printing text. If you specify an expression that is less
than the number of the current print position, no spaces will be
inserted before the next character to be printed.

The integer value of the expression following SPC define the number
of spaces to be inserted after the last-printed character. Examples of
TAB and SPC are given below.

)PRINT "Great"; TAB(8); 347
Great 347
)PRINT "Underhanded"; TAB(8); 553
Underhanded553
)PRINT"/\'; SPC(1); "B"; SPC(2); "C"
ABC
)PRINT "D"; TAB(5); "E"; SPC(5); "F"
DEF

Each SPC statement is limited to a maximum value of 255, but you
can place as many spaces as you wish by stringing together a series
of SPC statements like this:

)SPC(250)SPC(139)SPC(255)

The PRINT ... USING statement gives you greater
control over text on the screen. See the section on
formatting text output.

Entering Data

INPUT
INPUT accepts numbers or text typed at the keyboard and assigns
them to variables specified in the INPUT statement. INPUT can be
used in deferred execution only. For instance, if you wanted users of
your program to input their age in years, you could use

)20 PRINT "Enter your age in years"
)25 INPUT AGE

When INPUT is executed in this form, BASIC automatically displays a
question mark on the screen, and waits until you type something (in
this case, your age). For example

)RUN
Enter your age in years
?38
)

You may optionally include a string in an INPUT statement, like this:

)20 INPUT "Enter your age in years"; AGE

The optional string must be a sequence of characters in quotation
marks, followed by a comma or semicolon; it cannot be a string
variable or expression. When the optional string is present, it is
displayed exactly as specified; no question mark, spaces, or other
punctuation are displayed after the string. You can use only one
optional string.

After the optional string, one or more variable names must be
present, separated from each other by commas. Like this:

-
1000 INPUT "Please type three words"; A$, 8$, C$

INPUT expects you to type a number or string for each of the
variables in the INPUT statement. The numbers and strings are

expected in the same order in which the variables occur in the
statement. For a numeric variable, a number is expected, and for a
string variable a string is expected.

The numbers and strings that you type in response to an INPUT
statement must be separated from each other by commas or returns.
If you use a return and another number or string is still expected,
BASIC will display not one, but two question marks on the next
screen line. The numbers and strings are assigned to the variables, in
sequence. For example:

1000 INPUT "Please type four numbers: ";A,B,C,D

This statement expects you to either enter four numbers separated by
commas like this:

100, 200, 300, 400 (followed by return)

Or you can do it this way, with the numbers separated by returns:

Please type four numbers: 100
??200
??300
??400

Execution can be halted during an INPUT statement, if you type
CONTROL-Cas the first character, followed by return.

Entering Numbers

For arithmetic variables, INPUTwill accept only numbers. Remember
that the characters +, space,-, period, and E are all legitimate parts
of numbers. Any spaces in numbers are ignored.

Input which is not a legitimate number (such as a a string or a return)
will cause the message

?REENTER

to be displayed and the INPUT statement to be re-executed from the
beginning.

If an input number is not the same type as the corresponding
variable, it will be automatically converted to the same type; if
necessary, the number will be rounded. For example,

)SINPUT G%
)10 PRINT G%
)RUN
?6.87
7
)

Quotation Marks and Commas in String Input

Quotation marks and commas in string input are handled differently,
depending on the position of the string variable in the INPUT
statement to which the string will be assigned.

If the string variable is the last (or only) variable in the INPUT
statement, then any quotation marks or commas are treated as
ordinary characters in the string.

If the string variable is not the last variable in the INPUT statement,
then the comma and quotation mark characters are treated specially.
The comma separates strings in the same manner as it separates
numbers. By enclosing a string in quotation marks you can include
commas in it without trepidation. The quotation marks, as usual, are
not considered part of the string. The closing quotation mark of a
string can be omitted if the RETURN key is used to end the string. If a
quotation mark is not the first character typed, then a quotation mark
can be included anywhere else in the string without being treated
specially. The effects of quotation marks are best explained by
example (remember that a program can be halted by typing
CONTROL-Cas response to an INPUT statement):

)10 INPUT X$, Y$: PRINT X$, Y$: GOTO 10
RUN
?" . . IS, IS

is is
"is, "is is, "is
?REENTER
?"is," 'is'

is 'is'
?is", is"
is" is"
?""is, ""is
?REENTER
?is",'' is'"'
is"" is""
?"is"," "is""
?REENTER
?"is,isn't," "is,isn't"
is,isn't "is, isn't"
?
?BREAK IN 10
)

Null Strings

If the RETURN key and no other characters are typed when a string
response is expected, the response is interpreted as a null string.

GET

The open-apple key sets the high-order bit of any
characters typed from the keyboard, in effect adding
128 to all ASCII values sent from the keyboard. Since
this bit is ignored by BASIC, it does not affect keys
typed in response to an INPUT statement.

GET is used to assign a single alphanumeric character from the
keyboard to a specified variable in your program, without displaying
it on the screen and without requiring that the RETURN key be
pressed. The specified variable must follow the reserved word GET.
For example,

)100 PRINT "Press any key";
)110 GET PRESS$
)120 PRINT." You pressed the ";PRESS$;" key!"
)130 GOTO 100

CONTROL-C is treated like any other character; it does not interrupt
program execution.

Note that typing a return character when using GET to enter numeric
input, or any non-numeric character causes the variable to be
assigned a value of zero.

Because of this limitation, it is good programming practice to get
numbers by using GETwith a string variable and convert the
resulting string to a number with the VAL function. In most cases it is
more convenient to INPUT a number instead of getting it.

The GET statement can only be used with deferred execution.

If you display the value of a string variable that
contains a control character, that control character
can affect operation of the .CONSOLE device driver.
For example, if in the program example above, you
type CONTROL-C when asked to

Press any key

the text window will be reset when PRESS$ is
displayed by line 120. (See your Standard Device
Drivers manual).

If your program that uses GETwas called up by an
EXEC file, the input for the GET statement will be
taken from the EXEC file instead of from the
keyboard.

Storing Data Within Your Program

DATA and READ statements allow you to store data within a program
itself, allowing you to use it to fill arrays, create strings, or make other
use of the stored information. Although READ and DATA are not true
console 1/0 statements, they are included here because their effect is
similar to that of INPUT or GET statements.

DATA and READ
The DATA statement is used to provide a list of data elements to be
read by a READ statement. DATA statements do not have to precede
READ statements in a program. Data elements can be strings, reals,
integers, and long integers. String data elements do not have to be
bounded by quotation marks. For example,

)1220 DATA WHEN, 5, -4, "EQUALS", 1.000

The DATA statement can only be used in deferred execution, or an

?ILLEGAL DIRECT ERROR

results.

A data element list consists of all of the elements in all of the DATA
statements in a program. READ statements are used to read from a
data element list and to assign the values to variables. When the first
READ statement in a program is executed, the first variable in the
READ statement is assigned the value of the first data element in the
data element list. The second variable in the READ statement (if there
is one) is assigned the second element in the data list, and so on. For
instance,

)30 READ A$, 8%, C&, D$, E
)40 PRINT A$;" ";8%; C&;" ";D$;" ";E
)500 DATAWhen, 5, -4, "Equals", 1.000
)RUN
When 5-4 Equals 1.000
)

Data elements assigned to arithmetic variables generally follow the
same rules that numbers assigned to arithmetic variables by INPUT
statements follow.

There are two types of strings that may be used as data elements:
Literals (those without enclosing quotes), and quote-enclosed (or
"quoted") strings.

If CONTROL-C is a data element, it does not halt execution of the
program even when it is the first character of an element. With this
exception, data elements read into string variables follow the rules
for INPUT responses assigned to string variables:

• Either literal or quoted strings may be used.

• Quotation marks appearing within a quoted string cause the

?SYNTAX ERROR

message, but all other characters, including commas are
accepted as characters in that string. The entire string may
be enclosed within quotation, however.

• The colon and comma are accepted only in quote-enclosed
strings; CONTROL-M (the RETURN character) is never
accepted.

If a READ statement attempts to assign a string data element value to
an arithmetic variable, a

?SYNTAX ERROR

occurs.

Variables are assigned values of zero or null string (depending on the
variable's type) when any of the following conditions are met when an
attempt is made to read a data element:

• A comma is the first non-space character following the
reserved word DATA.

• There is no data element between two commas.

• The last character in a DATA statement is a comma (when the
comma is being read as a data element).

So when this statement is read:

100 DATA,

it can result in up to two element assignments consisting of zeros or
null strings.

When variables in a READ statement have been assigned values from
the data element list, BASIC leaves a data list pointer immediately
following the last element read. The next READ statement executed
(if any) begins using the data list from the pointer position. A RUN,
CLEAR or RESTORE statement moves the pointer back to the first
element in the data list.

When all of the elements in a DATA statement have been read, the
pointer moves on to the next DATA statement with a higher line
number, and reading continues with the first element listed. An
attempt to read past the end of the data list produces the message,
for example,

?OUT OF DATA ERROR IN 3400

3400 being the line number of the READ statement that asked for
additional data.

In immediate execution, you can only read elements from DATA
statements in a program that is currently in memory; that is a
program that has been typed in, loaded, or run. If no DATA statement
is in memory, the message

?OUT OF DATA ERROR

is displayed. Execution of a READ statement does not reset the data
list pointer back to the first element in the DATA list after having read
the last element in the list.

DATA may not appear as the first four characters of a
variable name since the variable name will then be
parsed as a DATA statement. Also note that everything
after DATA in a given line will be parsed as a data list.
You must continue to the next higher-numbered line
to continue the program.

You may not follow DATA with any executable
statements on the same-numbered line of your
programs. Anything following a DATA statement until
the next line number is considered to be part of a
data list.

RESTORE
RESTORE moves the data list pointer back to the beginning of the
data list. This allows you to read the same data more than once. There
are no parameters or options associated with RESTORE.

Formatting Information
In a very broad sense, the only thing that your computer can do for
you is manipulate information. Even games can be described in terms
of information handling.

Business BASIC provides you with several tools, described below, for
displaying the end result of the information manipulation performed
by your program.

PRINT USING and PRINT# USING
PRINT USING and PRINT# USING, (collectively referred to as
PRINT(#) USING), allow you to precisely control the format of
information displayed on the screen (PRINT USING) or written to files
(PRINT# USING).

The information format is controlled by printing fields defined by
format specifications (or specs). A printing field is a template
outlining the way that information may be laid out, either for screen
display or to a file for later printing. The information being formatted
may be either numeric or string data.

Specs may be included with the PRINT(#) USING statement in the
form of a string expression, or they may be part of an IMAGE
statement elsewhere in the program. If an IMAGE statement is used,
the line number containing it must be included in the PRINT(#)
USING argument list. Examples of legal usage of PRINT USING is
given below.

)1 0 PRINT USING 1 00; A$, 8%, C
)100 IMAGE 6A, 5#, #.624~

)1 8$="6A, 5#, #.6Z4E"
)10 PRINT USING 8$; A$, 8%, C

)10 PRINT USING "6A, 5#, #.6Z4E"; A$, 8%, C

All three examples given above do the same thing; display the values
of the variables A$, 8%, C, using the specs supplied by the user.

The expression list of a PRINT(#) USING statement is somewhat
different from the expression list of a PRINT or PRINT# statement
(described in the chapter File 1/0). Commas are required to separate
expressions in the PRINT(#) USING list, but they do not cause the
cursor to move to the next tab field.

A semicolon may be used at the end of the expression list to
suppress a carriage return, however, just as used in PRINT and
PRINT#.

If the number of expressions in the expression list exceeds the
number of specs, the spec list is used again from the beginning until
all expressions in the expression list have been evaluated and used. A
single spec will be used by all expressions in the list. This is
especially useful if you have a number of values to be displayed using
the same spec; you only have to write the spec once.

@! The following errors can occur when a PRINT(#) USING
statement is executed:

If the USING clause references an IMAGE statement,
and the IMAGE statement does not exist, the

?UNDEF'D STATEMENT ERROR

message is displayed.

If the USING clause references a string variable or contains a
string, and the string value is null, a

?SYNTAX ERROR

occurs. An IMAGE statement containing no specs also results
in the same error message.

If a

?SYNTAX ERROR

occurs in an IMAGE statement, the message gives the line
number of the PRINT(#) USING statement, not that of the
IMAGE statement.

If the type of an expression does not match the type of its
spec-i.e., string with numeric or vice versa-a ?TYPE
MISMATCH ERROR message is displayed.

IMAGE
An IMAGE statement contains a sequence of specs separated by
commas. Each spec corresponds to an expression in a PRINT(#)
USING statement, and controls the printed or displayed format of the
expression value. (Exception: a literal spec does not correspond to an
expression.) The IMAGE statement can only be used with deferred
execution, and it must be the only statement on the line. Here is an
example of an IMAGE statement with three specs:

10 IMAGE +5#.3#,10X,-#.5#4E

The following example show the output generated by the IMAGE
statement in line 10 with two specs:

10 IMAGE +###.###, 3"."
100 PRINT USING 10; 1.5, 3.14159, 172.9, 5
)RUN
+ 1.500 ... + 3.142 ... + 172.900 ... + 5.000 ...
)

Output Format Specifications
The format of your program output may be defined by format
specifications (or specs). There are three kinds of specs:

• A string spec controls the format of a string value in a
PRINT(#) USING statement.

• A literal spec inserts one or more spaces, returns, or copies
of a specified string into the text displayed by the PRINT(#)
USING statement.

• A numeric spec controls the format of a numeric value
displayed by a PRINT(#) USING statement. There are three
varieties of numeric specs: fixed-point specs (or fixspecs),
scientific notation specs (scispecs), and engineering notation
specs (engrspecs).

The String Spec

A string spec defines the field format and width for a string value, and
specifies whether the string value is to be left-, right-, or center­
justified within the field. If the string has fewer characters than the
field allows, the empty positions are filled with spaces.

A string spec defines a left-justified field by using "A", a right-justified
field with an "R", and a centered field with a "C". The width of the
field may be set either by using the number of characters to be used
in the field, or by preceding the spec with a positive integer equal to
the length in characters of the field.

For example, a six-character, right-justified field could be defined
either by RRRRRR or 6R. The specs 9C and CCCCCCCCC produce
the same result, a nine-character field with its string value centered
in the field.

Repeat factors: The numbers in the above examples
are called repeat factors. A repeat factor can be any
positive integer from 1 to 255; it affects only the
single character immediately following it. You could
also use 5AA or A5A instead of 6A, etc. A repeat
factor greater than 255 causes an

?ILLEGAL QUANTITY ERROR

message.

Here's an example of using string specs to format string
output into three columns:

10 IMAGE 15A, 15C, 10R
15 PRINT
100 PRINT USING 10;"COMPOSER", "TITLE", "KEY"
200 PRINT USING 10; "GRINSZ", "SONATA FOR

HARP" ,"F SHARP"
300 PRINT USING 10; "RIBBITT", "WATER SONG", "E

FLAT"
400 PRINT

The IMAGE statement in line 10 defines three fields: a 15-
character field with a left-justified string in it, a 15-character
field with a string centered in it, and a 1 0-character field with
a right-justified string in it. Note that these add up to 40
characters, so they will fill one half of a line on the screen.
This program runs as follows:

)RUN

COMPOSER
GRINSZ
RIB BITT

TITLE
SONTA FOR HARP

WATER SONG

KEY
F SHARP

E FLAT

Changing the string spec .in line 10 of the program fragment
given above has the following effect:

)10 IMAGE SA, SC, SR

)RUN

COMPOTITLEKEY
GRINSSONATF SHA
RIBBIWATERE FLA

All string values exceeding the new length of five characters
are truncated to fit in the newly-defined fields.

Element

A
c
R

Function

Left justify field.
Center field.
Right-justify field.

Table 3-1. String Spec Elements.

The Literal Spec

A special kind of spec called a literal spec does not format
the value of an expression: instead it inserts a fixed number
of spaces, a fixed number of returns, or a fixed string into the
output.

In a literal spec, an X means print a space. For example,

4X

inserts four spaces into the output.

A slash (/) character means print a return. For example, the
spec

2/

inserts two returns.

When a repeat factor is placed in front of a literal spec string,
it affects the entire string. For example, the spec

3"AB"

inserts

ABABAB

A given literal spec value can only insert one kind of thing
into the output. For example, two spec values are needed to
insert three spaces followed by five asterisks:

3X,5""

or

"*****"

Element

X
I

Function

Prints space.
Prints RETURN.
Encloses literal string

to be printed.

Table 3-2. Literal Spec Elements.

Numeric Formatting
Any numeric value, regardless of its type, can be formatted by
PRINT(#) USING statements in any of three ways: fixed-point,
scientific, or engineering format. There is a separate kind of numeric
spec for each of these outputs.

With slight differences in usage, all three numeric formats use digit
specs. Digit spec characters and their function are given in the table
below.

Character

&

z

Function

Reserves one numeric digit position.
Leading zeros suppressed.

Reserves position for digit or comma.
At least five digit positions must be
reserved to the left of the decimal point.

Reserves one numeric digit position.
Leading zeros are printed.

Table 3-3. Digit Spec Characters.

The FIXSPEC

The fixed-point specification (fixspec) controls the output format of
fixed-point numbers. Fixed-point numbers are any numbers
displayed without exponents including integers, long integers, and

real numbers. Here is an example of a simple fixspec appearing in a
PRINT USING statement:

)PRINT USING"+###.###"; 3.14159
+ 3.142

The spec given above consists of a + followed by a digitspec. A
digitspec reserves positions in the field for the digits of a numeric
value, and may also reserve a position for the decimal point. Three
different characters-#, Z, and & -can be used to form a
digitspec, and repeat factors are allowed.

The # character reserves one numeric digit position. Leading zeros
(if present) are replaced with spaces. For example:

)PRINT USING "+6#.3#"; 09999
+ 9999.000

A "Z" reserves one numeric digit position, just like a"#", however,
leading zeros are printed. For example:

)PRINT USING "+6Z.3Z"; 09999
+009999.000

An"&" character reserves one position for a numeric digit or comma.
Commas are inserted after every third digit left of the decimal point.
Commas are included in the character count and leading zeros are
replaced with~paces. At least five digit positions must be reserved to
the left of the decimal point when using &. For example:

)PRINT USING "+6&.3&"; 09999
+ 9,999.000

The examples above all show a decimal point with digits to the left
and to the right. However, no decimal point, or a decimal point with
nothing to the left, or a decimal point with nothing to the right may
legally be specified. Remember that integer expressions can have no
fractional part. If you specify a fixspec with a fractional part and
apply it to an integer expression, only zeros will appear to the right of
the decimal point, unless the SCALE function is used.

The value to be displayed is rounded-off, if necessary, to fit the
number of digits specified to the right of the decimal point. However,
if the number exceeds the number of digits specified to the left of the
decimal point, the entire field is filled with exclamation points.

The characters&,#, and Z may be mixed in a
digitspec, but those appearing to the left of the
decimal point yield to the character with the highest
precedence. The precedence of these characters is, in
order, & followed by #, followed by Z. If an & appears
in a digit spec, the formatted output is going to have
commas inserted and leading zeros suppressed.

The digitspec is only part of a fixspec. In all of the examples we have
shown a + as part of the fixspec to reserve a position for the sign of
the number, and in almost all cases you should do this. The + causes
the sign to be printed in all cases, while a- causes the sign to be
printed only if the number is negative; a space is printed if it is
positive. The sign of the number can also follow the last digit.

For financial output, a$ reserves a character position for a dollar
sign. A pair of asterisks(**) causes asterisks to be printed instead of
leading spaces when there are unused digit positions in the output
field. For example,

)PRINT USING "**+6#.3#"; 09999
+**9999.000
)PRINT USING "**$6#.3#-"; 09999
***$9999,000
)PRINT USING "+$6#.2#"; 09999
+ $9999.00

Note that the**· if used, must be the first thing in the fixspec and
cannot be used if Z is used for the digitspec, because Z leaves no
unused digit positions. The dollar sign can come next, or the number
sign (+ or-).

If you do not reserve a character position for the sign,
and the sign of a value in the PRINT(#) USING
statement is negative, the sign will be displayed in the
rightmost unused character position if there is one.
But if there is no unused position, and the sign is
negative, the entire field will be filled with exclamation
points indicating that the number of digits exceeds
the number of places specified to put them! Therefore
you should normally reserve a position for the sign in
all numeric specs.

In the forms of fixspec shown above, the dollar sign and the number
sign go exactly where positioned in the spec. But you can also cause
them to be printed in the rightmost available position(s) by using $$
or++, or in the leftmost position by using--. For instance,

)PRINT USING "$$+6#.3#"; 09999
$+9999.00
)PRINT USING "++6#.3#"; 09999
+9999.00
)PRINT USING "$--6#.3#"; 09999
$9999.00+

You can also place the sign of the number at the end of the digitspec
to do the same with the output:

)PRINT USING "$$6#.3#+"; 09999
$ 9999.00+

When Z is used in a digitspec, you cannot use$$,++,**· or--,
because everthing to the left of the first digit is moveable. All non­
space characters are shifted to the right, displacing any spaces. The
spaces remain to the left of the field so that its width does not
change.

The best way to learn the ins and outs of the fixspec is to experiment.
Here is a program that should help:

5 REM NumericSpecTester
10 INPUT "Enter desired spec: "; SPEC$
15 ON ERR PRINT "You entered a bad spec, try again!" : GOTO

10
20 F=1000:PRINT
30 X=1: GOSUB 100
40 X=12: GOSUB 100
50 X=123: GOSUB 100
60 X=1234: GOSUB 100
70 PRINT: PRINT" Spec was:"; SPEC$: PRINT
80 GOTO 10
100 PRINT USING SPEC$; X;: PRINT,X
110 PRINT USING SPEC$; -X;: PRINT,-X
120 PRINT USING SPEC$; X/F;: PRINT ,X/F
130 PRINT USING SPEC$; -X/F;: PRINT,-X/F
200 RETURN

The program NumericSpecTester first asks you to enter a spec from
the keyboard. It then displays two columns of numbers. In the left
colum are values displayed according to the spec you entered, while
the right column contains the same values output by a PRINT
statement using no format statement. You can use this program to
study the scispec and engrspec (described below.)

In addition to the digit spec characters, the fixspec uses the following
characters. If Z is used,$$,++, and-- may not be used.

Character Function

+ Reserves character position for sign.
Reserves position for "-" if number is
negative.

$ Reserves position for"$" sign.
** Prints asterisks instead of leading spaces.
+ + Reserves rightmost positions for signs and

dollar sign (if any).
Same as++, except sign is printed only if
number is negative.

$$ Reserves rightmost unused position for "$"
and numeric sign (if any).

Table 3-4. Fixspec Characters.

The SCISPEC

The scientific-notation specification (scispec) formats numeric output
in scientific notation. The scispec is simpler than the fixspec, having
either one digit or none to the left of the decimal point. The number
of digits to the right of the decimal point is defined by# characters,
either stated explicitly or by using a repeat factor. The exponent
position is defined with the letter E, and a repeat factor is legal.
Either three or four character position must be allowed for the
exponent. For example:

)PRINT USING "+#.4#4E"; 3.1415926
+3.1416E+00
)PRINT USING "+.4#4E"; 3.1415926
+.3142E+01

When the spec calls for one digit position to the left of the decimal
point, the first significant digit of the value is placed there; when
there is no digit position to the left of the decimal point, the most
significant digit is placed to the right of the decimal point. In either
case, the exponent is then calculated to make the displayed value
correct.

Notice that with four character positions for the exponent, only two
are available for the exponent's digits; with three character positions
for the exponent, only one is available for the exponent's digit. If the
calculated exponent will not fit the available space, the entire numeric
field is filled with exclamation points.

The letter Z can be used instead of# in a scispec, but the effect is
exactly the same. Note that if the sign is not explicitly specified in a
scispec, the sign of the value will only be printed if there are enough
available character positions and the value is negative.

Character Function

E Defines specification as Scispec.

Table 3-5. Scispec Character.

The ENGRSPEC

The engineering specification (engrspec) is closely related to the
scispec. It forces the exponent's value to be a multiple of 3, and has a
maximum of three digit positions to the left of the decimal point.

Either #'s or Z's can be used to indicate digit positions, and their
choice is significant only to the left of the decimal point: # replaces
leading zeros with spaces, and Z prints leading zeros. For example:

)PRINT USING "+3#.4#4E"; 1729
+ 1.7290E + 03
)PRINT USING "+3Z.4Z3E"; 1729
+01.729E+3

SCALE
SCALE is used in conjunction with PRINT USING to shift the decimal
point of a displayed value to the left or the right. SCALE uses two
arithmetic expressions as arguments. The first argument defines the
number of places to the right (or left, if negative) that the decimal
point should be moved. The second argument is the actual numeric
variable to be output.

SCALE takes ten raised to the power equal to SCALE:s first argument
and multiplies that by the value of its second argument. If the first
argument value is 5 and the second is equal to 22435, the value
output will be equal to 22435.0E5 output in the format specified by
the PRINT(#) USING statement. For example:

) A&= 12345678901234567
)PRINT USING "$$20&##" ;SCALE(-3,A&)
$12,345,678,901 ,235 (Note rounding of cents)

SCALE enables Apple Business BASIC to handle calculations in
cents using long integers, and then to output the results with the
decimal point placed to correctly indicate dollars and cents. You can

. take the same characters given in the example above and, with slight
change, convert cents to dollars:

)A&=12345678901234567
)PRINT USING $$20&.##;SCALE(-2,A&)
$123,456,789,012,345.67 (Note cents!)

The first SCALE argument must be in the range -128 to 127, and the
resulting exponent of the value must be between -99 and +99, or the

?ILLEGAL QUANTITY ERROR

message will be displayed.

102 Assignment Statements
103 LET
103 SWAP
1 04 Remark Statements
104 REM
105 Branching
105 Unconditional Branching
105 GOTO
106 Conditional Branching
107 IF. .. GOTO and IF. .. THEN
108 ELSE
1 09 Nested Conditional Statements
1 09 Remarks about Conditional Statement~~,,,,,,,,,+,,,,,_,+,,,,,,,,,,+,,,,,,,,,,~,
110 Looping
111 FOR and NEXT
113 STEP
115 Subroutines
115 GOSUB
115 RETURN
117 POP
118 Computed Branching
118 ON ... GOTO
119 ON ... GOSUB
119 ON KBD and OFF KBD
121 Reserved Variable KBD
121 Handling Errors
121 ON ERR and OFF ERR
123 RESUME
123 Reserved Variable ERR
123 Reserved Variable ERRLIN
124 Error-recovery Strategies

4
Controlling Program Execution

Introduction
This chapter describes the statements and functions supplied by
Business BASIC to help you control the path of execution of your
programs. Even the most trivial program will use one or more of the
items described here, and a very large program could require the use
of most of. them.

Assignment Statements
Assignment statements are used to assign the values of expressions
to variables. A typical assignment statement might be

)Ripple=5*4 "1/2

The variable to the left of the replacement sign (=) (RIPPLE, in the
example), is assigned the value of the expression on the right side.
Then you could type

)PRINT Ripple
10
)

The following are all legal assignment statements:

)IV%=9+PMT
)DSJ&=234324
)10 Body$(Arm,Leg)="Bone"
)10 ReassuringWords=Comforting-12

Variables and expressions of any type can be used in an assignment
statement. But if the type of the variable on the left side of the
repiF}cement sign is different from the type of the expression on the
right side, type conversion must occur. This happens automatically for
integer and real variables and expressions, but must be handled
explicitly for other types. (See the section on functions in the chapter
Tools of Your Trade for an explanation of type conversion functions).

LET
The reserved word LET may optionally precede an assignment
statement:

)LET Henry=FatherofJack

While LET is not required, it can make a program listing somewhat
easier to read and understand.

Note: only one assignment may occur per statement. That is,
the statement

)A=B=O

does not assign both A and B the value 0; instead, the logical
expression B=O is evaluated, and the result is assigned to the
variable A. See the discussion about logical expressions in
the chapter EXPRESSIONS AND STATEMENTS, if this is not
clear.

SWAP
SWAP does exactly what you might expect. It swaps the value stored
in one variable for the value stored in another. The names of the two
variables whose values are to be swapped must follow the reserved
word SWAP. For instance, the statements

)A=4: B=8: C=A/8

store the value .5 in the variable C. But

)A=4: B=8: SWAPA,B: C=A/B

stores the value 2 in the variable C.

You can use string, long integer, regular integer, and real variables
with SWAP, but both variables must be of the same type. If the two
variables are not of the same type, then a

?TYPE MISMATCH ERROR

results.

Remark Statements
Since programs are not written in naturallangauges such as English,
they are not always easy to understand. It seems to be a law that all
non-trivial programs need to be maintained, and without remarks to
aid the progra,nmer, the task becomes nearly impossible.

Be generous a~d clear in your inclusion of remarks, and other
programmers will be able to maintain your programs. Be stingy with
them, and in a few months you won't know what your own programs
are supposed to do or how they do it.

REM
REM allows you to insert remarks into your program. BASIC ignores
everything in a statement list following the reserved word REM up to
the next line number, and carries this text along with the rest of the
program. For example:

)REM Munge BASIC : Bake Apple : INVERSE : LIST

will not cause BASIC to execute any of the words or statements
following the reserved word REM.

The reserved word REM must be the first thing in a statement or the
statement will not be treated as a remark. For example,

)HPOS REM arkablyTall Buildings

is not legal statement; but the following is:

)REM HPOS kyscraper

Like all other statements, REM statements must not exceed 250
characters in length. If you comment your programs heavily, use
several REM statements in successive lines.

Branching
A program is said to branch when it does not execute the next higher
numbered statement in sequence but, under program control, jumps
to some other line instead. There are two kinds of branching,
conditional and unconditional.

Since branching in BASIC is by reference to line numbers, things can
get quite confusing if a programmer works in a sloppy fashion. The
line numbers themselves do not carr.y any indication of the function
carried out by the various parts of the program, and indiscriminate
branching car~ied out with gay abandon can result in a tangled,
spaghetti-like mass almost impossible to maintain or understand (or
digest).

Unconditional Branching
A statement causing program execution to branch each time it is
executed, under all conditions, is known as an unconditional branch.

GOTO
GOTO causes execution of the program to jump to the beginning of a
specified statement list. You specify the statement list to whicq
execution should jump, by following the reserved word GOTO with
the line number of the statement list. For example,

)1 0 PRINT 10 : GOTO 40
)20 PRINT20
)30 PRINT 30 : STOP
)40 PRINT 40
)50 PRINT 50 : GOTO 20

\

)RUN
10
40
50
20
30

BREAK IN 30
)

Most versions of BASIC begin at the lowest line number and search
sequentially until the desired line is found. Business BASIC reduces
the time spent in searching for line numbers in the following way: If
the line number referenced by the GOTO statement is greater than
the number of the GOTO, the search for that line begins with the
current line, otherwise the search begins at the start of the program.

If the line number given in the GOTO statement does not exist, or if
there is no line number given, then the error message,

?UNDEF'D STATEMENT ERROR IN 5293

is displayed. In this case, 5293 is the line number of the erroneous
GOTO statement. Immediate execution of a similarly illegal GOTO
statement such as

)GOT045

when there is no program in memory will generate an

?UNDEF'D STATEMENT ERROR

Conditional Branching
One of the most powerful capabilities of a computer program is the
ability to alter how the program executes depending on the data it is
working with; in effect, allowing the computer to make choices that
depend on circumstances outside the computer. This is called
conditional branching.

IF. •• GOTO and IF. •• THEN
IF statements allow the order of execution of statements to depend
on the truth value of a logical expression. The IF statement must
include both a logical expression to be evaluated, and instructions
for BASIC to follow if the expression is true. If the expression is false,
execution passes to the next higher numbered line of the program,
and the instructions given in the IF statement are ignored. The logical
expression to be evaluated must follow the reserved word IF, and the
instructions must follow the reserved words GOTO or THEN.

The instruction in an IF. .. GOTO statement must be a line number to
which execution should branch. For example,

)IF A=4 GOTO 473
)IF KP+ BH GOTO 3785
)100 IF G& MOD F& >2 GOTO 121

In an IF. .. THEN statement, the instructions can be any line number to
which execution should branch, or a statement list for BASIC to
execute. For example,

)IF 0 THEN PRINT 1
)50 IF 2+2 THEN 2500
)IF S/4>=17*NOT 2THEN GOSUB 3000: INVERSE: PRINT
"Hi"
)IF Language= German THEN PRINT "Gesundheit" :
Sneezes= Sneezes+ 1
)10 IF Language= English THEN PRINT "Bless you!" :
Sneezes= Sneezes+ 1

These are all equivalent statements:

)IF G=5 THEN 200
)IF G=5 GOTO 200
)IF G=5 THEN GOTO 200

ELSE
Usually when you test a condition with an IF. .THEN statement, you
have some alternate operation to perform, and it helps if the program
syntax reflects this. The optional ELSE clause helps improve
readability of your programs.

ELSE allows you to specify instructions for BASIC to execute if the
truth value of the logical expression is false. In other words, when the
expression is false, instead of having execution pass to the next
higher numbered line, you can have BASIC execute some
instructions. The instructions following the reserved word ELSE can
be a line number to which execution should branch, or a statement
list to execute. If the logical expression is true, the ELSE clause and
any statements following on that line are ignored. For example,

and,

)IF X=1 THEN Y=2: ELSE Y=3
)IF 3<PL5 THEN PL5=- PL5 : ELSE NORMAL : GOTO 376
)718 TEXT : IF NOT Y THEN 3200 : ELSE WINDOW 1,1 TO 4,4

: GOT0457

)10 IF 0<5 THEN PRINT 101 :ELSE PRINT 100
)20 IF 0>5 THEN PRINT 201 : ELSE PRINT 200
)RUN
101
200

An ELSE clause not immediately following an
IF. .. THEN statement acts exactly like a REM
statement. For example,

)ELSE Whatever you want to remark about
here!

Nested Conditional Statements
The statement list following THEN and ELSE may contain as many
additional IF. .. THEN or IF. .. THEN ... ELSE statements as the 250
character limit will allow. Conditional statements contained inside
other conditional statements in this manner, are said to be nested. In
these circumstances, BASIC matches each ELSE with the most
recently encountered and unmatched THEN. For an example from
baseball:

)IF bottom_oLthe_ninth THEN IF bases_loaded THEN bunt :
ELSE swing_aLit

In this case, the ELSE. clause goes with the second THEN, which is
the one most recently unmatched.

Assume it is time for your yearly dental checkup. If you have a
toothache and the dentist is on vacation, then there is nothing to do
but suffer until you can get an appointment. If you don't have a
toothache, you can smile.

)IF toothache THEN IF dentisLis_on_vacation THEN suffer
:ELSE caiLfor_appointment: ELSE smile!

Remarks about Conditional Statements
The following IF statements have legal logical expressions:

)IF 1 <2 THEN PRINT "Yup"
)IF 0 THEN PRINT "Nope"
)IF A<B THEN PRINT "Yup" : ELSE PRINT "Nope"
)IF "A''<"B" THEN PRINT "Yup"
)IF 1 +2*Z THEN PRINT "Maybe so" : ELSE PRINT "Maybe
not"

The following IF statements do not have legal logical expressions:

)IF "Fred" THEN PRINT "Fred"
)IF KAREN$ THEN PRINT "Fred's friend"
)IF "Fred"+KAREN$ THEN PRINT "Fred 'n Karen"

Here's why: remember that a logical expression, can be either a
comparison of arithmetic expressions, or a comparison of string
expressions. It is important to remember that logical expressions
reduce to a truth value of 1 or 0. While it is legal to substitute a single
arithmetic expression for a logical expression, it is not legal to
substitute a single string expression for a logical expression. This is
because BASIC has rules for treating the value of an arithmetic
expression as true or false. However it does not have similar rules for
string expressions. If you want to test whether a string is null or not,
use the LEN function (described in the section STRINGS} like this:

}IF LEN(KAREN$} THEN (or GOTO} PRINT "Karen exists!"
: ELSE PRINT "No Karen"

An IF without a matching THEN (or GOTO}, or a THEN (or GOTO)
without a matching IF generates a

?SYNTAX ERROR

message.

@ ELSE must be preceded by a colon when it follows an
IF. .. THEN statement. For example:

Looping

100 IF X=12THEN 1000: ELSE 2000
200 IF Minnow$= Fish$ THEN Answer$= True
210 ELSE Answer$= False

Many problems suitable for solution by your Apple require that one or
more operations be carried out repetitively. Looping describes this
process.

Loops can be divided into two general types: Those operating a
determined number of times, and those operating either as long as a
specified condition is true or until a specified condition is met. For
example:

10 INPUT "Enter your Social Security Number: ";SSN$
20 IF SSN$="562-43-0666" THEN STOP: ELSE GOTO 10

The first type is exemplified by the FOR..NEXTstructure described
below, and the second type is usually constructed in BASIC with
IF..THEN (or IF..GOTO) or GOTO statements like the program fragment
above, which will continue asking for social security numbers until
562-43-0666 is entered, when it will stop.

FORand NEXT
FOR and NEXT allow a group of statements to be executed a
specified number of times. For example, if you wanted to display the
numbers 1 to 5, you might write a program like this:

)10 Number=1
)20 PRINT Number
)30 Number=Number+1 :IF Number<6THEN 20

The FOR and NEXT statements offer you an alternative method for
constructing such loops as the one given above. The FOR statement
defines the beginning of the statement list making up the body of the
loop and sets the number of times it is to be executed, and the NEXT
statement defines its end. For example, to display the numbers 1 to 5,
you could use this program:

)10 FOR Number=1 TO 5
)20 PRINT Number
)30 NEXT Number
)RUN
1
2
3
4
5
)

In line 10, the control variable Number is assigned a beginning value
of 1, and an ending value of 5. Line 30 in this program does exactly
what the statements in line 30 did in the program before it. The NEXT

statement increments the value of Number by 1, and then checks to
see if the value of Number is greater than the ending value that was
specified in the FOR statement.

If the value of Number is less than the ending value, execution loops
back to the statement immediately following the FOR statement (line
20). If the value of the control variable is greater than the ending
value, execution continues with the next statement immediately
following the NEXT statement.

The control variable can be either a real or an integer variable, but
not a long integer or string variable. The beginning and ending values
assigned to the control variable in the FOR statement can be the
result of arithmetic expressions. For instance,

)FOR Repeat%= T +44- F6/D*NOT R TO 54*5/FJ : NEXT
Repeat%

is perfectly legal, if somewhat obscure.

FOR..NEXT loops may contain other FOR..NEXT loops; loops
contained within other loops are said to be nested. For instance:

)10 FOR Row=1 TO 3
)20 FOR Column=2 TO 3
)30 PRINT Row, Column
)40 NEXT Column
)50 NEXT Row

NEXT statements may contain as many control variable names as you
would like. For example:

)60 FOR Loop1 =1 TO 4: FOR Loop2=4 TO 55
)70 FOR Loop3= -4 TO 55
)80 NEXT Loop3, Loop2, Loop1

The first control variable given in the NEXT statement must be the
same as the one named in the most recently executed FOR
statement; the second control variable given must match the second
most recently executed FOR statement, and so on. Incorrectly

matched FOR and NEXT statements cause the message

?NEXT WITHOUT FOR ERROR

to be displayed. The following example contains incorrectly nested
loops:

STEP

)90 FOR A=1 TOT%
)100 FOR B=1 TO 43
)110 NEXT A, B

FOR statements may optionally include a STEP clause allowing you
to specify the amount to increment the control variable with each
iteration of the loop. For instance:

)FOR BYTE=2TO 10 STEP 3: PRINT BYTE: NEXT BYTE
2
5
8
)

If the STEP clause of the FOR statement is absent, the control
variable is incremented by 1, by default, when the following NEXT
statement is executed. You can use any arithmetic expression to
specify the value to increment the control variable.

If a negative increment value is specified in a STEP clause, and the
value of the control variable is less than the ending value after it has
been incremented by a NEXT statement, execution passes to the
statement following the NEXT; in other words the loop is terminated
when the NEXT statement is reached. For example,

)FOR Loop=1 TO 10 STEP -2: PRINT Loop: NEXT Loop
1
)

If a negative value is specified in a STEP clause, the loop counts
backwards. For instance,

)FOR Loop=10TO 1 STEP -2: PRINT Loop: NEXT Loop
10
8
6
4
2
)

If the increment value is 0, the control variable is incremented by 0
each time a NEXT statement is executed. Which means that the value
of the control variable will never be greater than the ending value,
and the statements between FOR and NEXTwill be repeated
indefinitely (unless the ending value is less than the control variable
at the start). This is known as an infinite loop. The only cure for such
a situation is to type CONTROL-C. or press the RESET button.

The control variable is incremented and compared to
the ending value only when the NEXT statement at the
end of the FOR..NEXT loop is executed. This means
that the statements between the FOR and NEXT are
always executed at least once.

A NEXT statement without a specified control variable defaults to the
control variable given in the most recently executed FOR statement
still in effect. A NEXT statement without a specified control variable
executes faster than one with a specified control variable. For
example,

)FOR G6=4 TO REV3/21 : NEXT

If there is no FOR .. NEXT loop in effect, executing a NEXT statement
generates a

?NEXT WITHOUT FOR ERROR

message. The same error message is displayed if the control variable
specified by a NEXT statement is different than the control variable
given in the most recently executed FOR statement.

Nesting more than 9 FOR..NEXT loops inside one another elicits the

?STACK OVERFLOW ERROR

message.

If a deferred-execution FOR statement is still in effect, an immediate
execution NEXT statement can cause a jump to the deferred
execution program, where appropriate.

Subroutines
A subroutine is a group qf statements that perform some specialized
or frequently repeated task.

GOSUB
GOSUB causes BASIC to branch to a subroutine. You must follow the
reserved word GOSUB with the line number of the first statement in
the subroutine. When BASIC executes a GOSUB statement, a pointer
to the statement immediately following the GOSUB statement is
placed at the top of a list of pointers called a program stack, then
execution is transferred to the line number given in the GOSUB
statement.

If the line number given in a GOSB statement does not correspond to
an existing line in the program, then the message

?UNDEF'D STATEMENT ERROR IN 746

is given, where 746 indicates the line containing the erroneous
GOSUB statement.

Return
RETURN has no parameters or options. When executing a RETURN
statement, BASIC removes one pointer from the top of the program
stack and branches to the statement indicated by the pointer. This is
normally the statement immediately following the most recently
executed GOSUB statement. For example, this program

)10 GOSUB 200
)20 PRINT "Back"
)30 GOTO 999
)200 REM The subroutine goes here
)210 RETURN
)999 END

runs as follows. When line 10 is executed, a pointer to the next
statement (line 20) is placed on the top of the program stack, and
execution branches to the subroutine at line 200. After line 200,
execution transfers to line 210, where the RETURN statement causes
BASIC to remove the top pointer from the stack and branch to the
line indicated (line 20).

Another example of GOSUB and RETURN:

)10 PRINT "Now branching to subroutine 100"
)20 GOSUB 100
)30 PRINT "Hello again"
)40 END
)100 PRINT "Subroutine 100 speaking"
)11 0 RETURN : REM Line 30 will now be executed.

A program can have nested subroutines (subroutines calling other
subroutines) up to 23 deep. If GOSUBs are nested more than 23
deep, the

?STACK OVERFLOW ERROR

message is given. For example, here is a program with subroutines
nested 3 deep:

)10 GOSUB 100
)20 END
)50 GOSUB 200
)60 RETURN : REM Branch to 120
)100 GOSUB 50
)120 RETURN: REM Branch to 20
)200 RETURN : REM Branch to 60

You should note that the BASIC statement RETURN is
not the same thing as pressing the key marked
RETURN. The RETURN associated with subroutine is
a normal BASIC statement, and is spelled out.

If BASIC attempts to execute one more RETURN statement than it
has encountered GOSUB statements, the

?RETURN WITHOUT GOSUB ERROR

message is displayed.

POP

POP allows you to jump out of one level of subroutine nesting.

When a POP statement is executed, BASIC removes (POP's) the top
pointer from the program stack and discards it, without causing
execution to branch anywhere. When the next RETURN statement is
encountered after a POP statement is executed, instead of branching
to the first statement beyond the most recently executed GOSUB,
BASIC branches to the first statement beyond the second most
recently executed GOSUB.

If a POP statement is executed before a GOSUB has been
encountered, or if more POPs and RETURNs are encountered than
GOSUBs, the message

?RETURN WITHOUT GOSUB ERROR

is given because more pointers have been removed from the stack
than were placed on it.

Example of POP:

)10 GOSUB 100
)20 PRINT "End of program"
)30 END
)100 REM This subroutine has no return statement
)11 0 PRINT "Subroutine 100 speaking"

)120 PRINT "About to branch to subroutine 200"
)130 GOSUB 200
)140 REM This line is never executed
)200 PRINT "Subroutine 200 speaking"
)210 PRINT "Popping to avoid returning to line 140"
)220 POP: REM Causes pointer to line 140 to be removed
from the stack
)230 RETURN: REM Execution now resumes at line 20
)RUN
Subroutine 100 speaking
About to branch to subroutine 200
Subroutine 200 speaking
Popping to avoid returning to line 140
End of program
)

Computed Branching

You will find that many programs require that a different set of
operations should be for each different possible value in a range.
Computed branching allows you to easily tailor your program to
respond to a number of possible conditions.

ON ... GOTO
ON ... GOTO is used to specify different program branch points, based
on the value of an arithmetic expression. The arithmetic expression
must follow the reserved word ON, and the line numbers to which
execution branches must follow the reserved word GOTO. For
example,

)1000 ON X GOTO 100, 10, 300, 40

If X= 1, execution branches to the first line in the list of numbers (line
1 00). If the value of X is 2, then execution branches to the second line
in the list (line 10). If X=3, execution branches to line 300 (the third
line in the list), and so on.

The value of the arithmetic expression must be within the range 0 to
255,oran

?ILLEGAL QUANTITY ERROR

results. If the value of the arithmetic expression is 0, or greater than
the number of line numbers given in the ON ... GOTO statement, the
list of line numbers is ignored, and execution continues with the next
statement in the program.

ON ... GOSUB
ON ... GOSUB is identical to the ON ... GOTO statement, except that the
line numbers following the reserved word GOSUB must be line
numbers of subroutine entry points. For example:

)1000 ON X GOSUB 1000, 2000, 3000, 4000

When a RETURN statement within the subroutine is executed,
execution branches to the statement immediately following the
ON ... GOSUB statement.

The value of the arithmetic expression must be within the range 0 to
255 or an

?ILLEGAL QUANTITY ERROR

message is displayed.

The list of line numbers in the ON ... GOSUB statement will be skipped
entirely if the value of the arithmetic expression is 0, or greater than
the number of line numbers given; execution will continue with the
next statement in the program.

ON KBD and OFF KBD
ON KBD is used to cause BASIC to execute a specific statement list
immediately when any key is pressed. The statement list to be
executed must follow the reserved word KBD.

After an ON KBD statement has been executed, BASIC continues
executing the program normally-but as soon as any key is pressed,
execution branches back to the most recently executed ON KBD

statement. Then the statement list pointed to by the ON KBD
statement is executed.

The branch to the ON KBD statement list is treated as a GOSUB to a
subroutine, so the program segment that KBD causes to be executed
must end with a RETURN statement. To enable ON KBD to handle
more than one keystroke, the last statement in the list should be
another ON KBD statement. For example,

10 ON KBD GOTO 100: REM BASIC branches here when any
key is pressed
20 PRINT".";: REM Print periods while not handling key­
strokes
30 GOTO 20
100 PRINT KBD: REM Display the ASCII value of the key last
pressed
110 ON KBD GOTO 100 : REM Re-enable ON KBD. Must be
before return
120 RETURN: REM Program jumps back to the statement
following the one during which a key was pressed

This displays zillions of periods (more or less), and whenever a key is
pressed, the instructions in the ON KBD statement are executed.

BASIC forgets the last ON KBD statement as soon as a key is pressed,
even before BASIC executes the statement list in the ON KBD
statement. This is why the example program had to execute another
ON KBD statement in line 110. BASIC also forgets the last ON KBD
statement executed, if the program returns to immediate execution
for any reason.

Execution of an OFF KBD statement causes BASIC to forget the last
ON KBD statement that was executed.

An ON KBD statement must be executed just prior to
the RETURN statement, or a

?STACK OVERFLOW ERROR

message may result.

When ON KBD is in effect, the program can not be
halted with CONTROL-C. since this is treated just like
any other keystroke. However, the ON KBD statement
could cause a branch to a STOP or END statement if a
CONTROL-C is typed. A RETURN statement placed
after the STOP would allow the CONT statement to be
used.

The Reserved Variable KBD
Business BASIC allows you to read, but not write to, several of its
system variables. These are called reserved variables. KBD contains
the ASCII value of the last key struck (see the appendix, ASCII
Character Codes). When you use the reserved variable KBD in an
ON ... GOTO or ON ... GOSUB statement, you must enclose KBD in
parentheses, or BASIC will become confused as to the meaning of
your statement:

)ON (KBD)-64 GOTO 100,200,300

Handling Errors
If your program is going to be used by someone else, you might want
to have expected errors handled by the program rather than have
Business BASIC's normal error responses bring everything to a
crashing halt. The tools to let you do this are described below.

ON ERR and OFF ERR
ON ERR is used to force BASIC to let your program handle any errors
that might occur.

When an ON ERR statement is not in effect, and an error occurs in
deferred execution, BASIC displays a terse error message on the
screen and halts execution; this can cause confusion if the person
running the program does not understand programming.

ON ERR is typically used to give a more enlightening or appropriate
error message or to provide the innocent user of your program with a
chance to avoid causing another error.

A statement or statement list must follow the reserved variable ERR.
Execution branches to the subroutine referenced by the statement
list whenever an error is encountered, and BASIC does not display an
error message on the screen or halt execution.

The ON ERR statement should not be used as a tool for finding errors
in programs. (Use the TRACE statement for this instead). ON ERR is
intended primarily to allow you to write nicer, more forgiving
programs for users.

For the ON ERR statement to be most effective, it is important that it
be placed near the beginning of the program, since BASIC must
execute it before it can use it. An ON ERR statement must be
executed before the program encounters an error.

If a program contains more than one ON ERR statement, only the
most recently executed one will be used.

OFF ERR cancels the most recently-executed ON ERR statement.
There are no parameters or options associated with this statement.
After an OFF ERR statement has been executed, BASIC resumes
displaying error messages and halting execution just as it did before
the ON ERR statement was executed.

The statements that ON ERR causes to be executed
must themselves be free of errors, or an endless loop
may result. The endless loop will be unstoppable by
CONTROL-C. because CONTROL-C is itself
considered an error. For a complete list of BASIC
errors, see the appendix ERRORS.

The following program illustrates one simple way to use the ON ERR
statement. In this example, the computer is expecting the e 2 user to
enter a number, and the error handling statements are executed if a
letter or word is typed instead:

10REMEXAMPLEOFERRORHANDUNG
20 ON ERR GOSUB 1000

30 INPUT "Please type a single number between 1 and 100
";X
40 PRINT "The number you typed was ";X
50 END
1000 REM ERROR HANDLING SUBROUTINE
1010 PRINT: PRINT "I'm very sorry, but only a number will
do. Please try again."
1020 RETURN

RESUME
If your error-handling routine ends with a RESUME statement,
execution will begin again at the start of the line where the original
error occurred.

Business BASIC ignores RESUME statements that it encounters until
an error occurs. If you try to use RESUME in immediate execution, an

results.

?ILLEGAL DIRECT ERROR

ON ERR subroutines using RESUME must be error­
free. Errors in your error routines may "hang" the
system. If this happens, you will have to reboot
BASIC, and anything in memory will be lost.

The Reserved Variable ERR
When BASIC encounters an error, it assigns the reserved variable
ERR a code number corresponding to the type of the detected error.
You can then refer to the reserved variable ERR to determine what
kind of error occurred. For a list of these codes and the
corresponding error messages, see the appendix ERRORS.

The Reserved Variable ERRLIN
Your error-handling routines called by an ON ERR statement can
check the reserved variable ERRLIN to find out which line contained
the error.

Error-Recovery Strategies
The statements that ON ERR causes to be executed can be any legal
BASIC statements. Since they must be able to handle any BASIC
error, certain strategies suggest themselves.

One thing you can do with the ERR reserved variable is to use it in an
ON ... GOSUB statement to handle the individual errors that can occur.
Each individual subroutine could then do whatever you like about its
own particular likely error conditions. When the subroutine returns,
the last statement in the ERR statement list would be a RESUME
statement.

128 Introduction
128 Filenames
129 The Reserved Variable PREFIX$
130 Creating Files
130 CREATE
132 Manipulating Files
132 CATALOG
134 DELETE
134 RENAME
135 LOCK and UNLOCK
136 File Types
136 Opening and Closing Files
137 OPEN#
138 CLOSE and CLOSE#
139 Accessing Files
139 INPUT#
140 OUTPUT#

141 PRINT#
142 PRINT# USING
142 Data Files
142 READ#
144 WRITE#
145 Sequential Access
145 Text Files
147 Data Files
148 Remarks
150 Random Access
152 Text Files
153 File Functions and Statements
154 ON EOF#
154 OFF EOF#
154 Reserved Variable EOF
155 TYP
156 REC
156 File 1/0 Example

5
File 110

Introduction
This chapter explains how to use devices and files with BASIC. You
should read the chapter in your Apple Ill Owner's Guide dealing with
files to understand files in general and the terminology describing
Apple Ill files.

Apple Business BASIC treats every peripheral device connected to
your Apple as a file, including the keyboard, screen, printer, and disk
drives. This means that there need be only one method of doing input
or output for all the different peripherals connected to your Apple.
Business BASIC allows you to have a maximum of 10 files open at
one time, including 1 EXEC file (for a total of 11 files).

Filenames
To use any given file, you must refer to it by its local filename or
path name.

Local filenames can be any sequence of 15 or fewer letters, digits, or
periods, beginning with an alphabetic character. They may not begin
with a slash character or contain spaces.

The local filenames of character devices always begin with a period
(.). For instance, .PRINTER, and .CONSOLE are the filenames
assigned by BASIC to refer to the printer device driver, and the
console (the Apple screen and keyboard) driver.

Pathnames may be up to 128 characters in length. TheApple Ill
Owner's Guide describes pathnames in greater detail.

You can refer to a specific disk drive by using the
device reference names .D1, .02, .D3, or .D4 as a
partial pathname .. D1 refers to the volume in the built­
in disk drive, and .D2, .D3, .D4 refer to volumes in any
additional external disk drives.

Diskettes get their volume names and root directories when they are
formatted. To format diskettes, you must use the FORMAT DISKETTE
option on your Utilities diskette as described in your Apple Ill
Owner's Guide.

To create BASIC program files, you must use the SAVE statement. To
create BASIC text files, data files, or subdirectories, you must use the
OPEN or CREATE statements.

The Modifiable Reserved Variable PREFIX$
Since BASIC requires a full pathname any time you want to use a file,
how can you use partial pathnames?

Pathnames starting with any character other than a period or a
backslash (partial pathnames) are interpreted by BASIC as the
contents of the modifiable reserved variable PREFIX$ concatenated
with the partial pathname as entered.

To set the prefix in BASIC, so that you can use partial path names to
refer to files, assign a string constant to the reserved variable
PREFIX$. For example, if you wanted the prefix to be
/Personnel/Communication/Internal, use the statement

)PREFIX$= /Personnel/Communication/Internal

After you have set the prefix, you can refer to files by using either
partial pathnames or the local filename. If you wish to access another
disk and override the prefix, use a full pathname.

When you boot Apple Business BASIC, PREFIX$ is automatically set
to the volume name of the diskette that was used to boot the system.
You can find the name of the current prefix with a PRINT statement:

)PRINT PREFIX$

A pathname can refer to a specific device by preceeding the name
with a period, for example; .PRINTER or .D1

A pathname begining with any alphabetic character is a partial
pathname that refers to a file defined by the contents of PREFIX$
plus the partial pathname supplied.

A pathname begining with a"/" is assumed to be the complete
pathname of a file.

Creating Files

CREATE
CREATE is used to make root directories, subdirectories, text files,
and data files. You must specify exactly what type of file you want to
create, and its name, by following the reserved word CREATE with
the new path name and either TEXT, DATA, or CATALOG, separated by
a comma. TEXT specifies that a text file be created; DATA specifies
that a data file be created; and CATALOG specifies a root directory or
subdirectory. For example, to create a text file called Applepie on a
diskette whose volume name is Pies, use

)CREATE "/Pies/ Applepie", TEXT

Recall that you can use the prefix stored in the reserved variable
PREFIX$ by leaving off the initial backslash of the partial pathname.
For instance,

)PREFIX$= "/Pies"
)CREATE Applepie, TEXT

causes the full pathname to be /Pies/Applepie. Or,

)CREATE Fruitpies, CATALOG

creates a subdirectory called Fruitpies, (using the prefix specified in
PREFIX$ as the first part of the pathname) that may then contain
files.

A files' record size may be specified by appending an arithmetic
expression to the CREATE argument list. The record size is required
only for random access files, and must be in the range from 3 to
32767. If no record size argument is given, the file record size
defaults to 512 bytes. For example,

)CREATE Attache, TEXT, 4212

creates a file with the local filename Attache, having records of 4212
bytes each. When creating subdirectories, the arithmetic expression
specifies the size of the directory. The directory size defaults to 512
bytes if unspecified (enough to hold twelve files).

An attempt to create an already-existing file generates a

?DUPLICATE FILE ERROR

message.

As a convenience in immediate execution, the pathname may be
entered directly in CREATE and OPEN statements rather than either
as a string variable or as a literal enclosed by quote marks. For
example, in immediate execution, the statements

)CREATE /Foe/Fighter, DATA

and

)CREATE "/Foe/Fighter", DATA

are equivalent. In deferred mode, the quotation marks are required.
Not using them results in a

?TYPE MISMATCH ERROR

Manipulating Files
Business BASIC provides you with several statements to directly
manipulate files. Using these statements you can see what files are
on a volume, remove unwanted files, rename, and lock and unlock
files.

CATALOG
CATALOG displays a listing of a root directory or subdirectory
specified by the path name following the reserved word CATALOG. If
the specified pathname is a diskette volume name, then the names of
all files in the diskette root directory are displayed on the screen and
the names of any subdirectories of the root directory are also
displayed. For example, to see a catalog of a diskette named Apple1,
enter

)CATALOG /Apple1

If the pathname specified is a diskette subdirectory, then the names
of all files in that subdirectory are displayed. For example, if
Applekind is a subdirectory,

)CATALOG /Apple1/Applekind

will list the names of all the files in the Applekind subdirectory.

If a partial pathname is specified as the CATALOG argument, the
prefix stored in the reserved variable PREFIX$ is used.

The reserved word CATALOG may optionally be abbreviated as CAT.

The file types displayed by CATALOG are shown below in Table 5-1.

BAD-An area on the diskette that is damaged in some way.

BASIC-BASIC program file (created with SAVE).

BINARY-An Apple Ill assembly-language file.

CAT -root directory or subdirectory.

DATA-BASIC data file.

FONT -An Apple Ill file containing binary information about a
character set.

FOTO-A file containing data representing a picture on a
graphics display screen.

PASCOD-Pascal code file.

PASDTA-Pascal data file.

PASTXT -Pascal text file.

RESERV-Reserved for future file types.

SYSTEM-system program file.

TEXT -BASIC text file.

UNKNWN-BASIC data or text file; the file has been opened,
but not written to with either a PRINT or WRITE
statement.

Table 5·1. File Types Displayed by CATALOG.

File types are discussed in detail later in this chapter.

DELETE
The DELETE statement is used to remove the subdirectory or file
specified as its argument. A subdirectory may be removed only if all
files in that subdirectory have been deleted. If the last file in a root
directory is deleted, the empty root directory will still remain. For
example, to delete a file named Banana in a root directory named
Tree, you would enter

)DELETE /Tree/Banana

A number of errors can occur with improper arguments appended to
a DELETE statement. They are summarized in the table below.

Error Message

?VOLUME NOT FOUND ERROR

?PATH NOT FOUND ERROR
?FILE NOT FOUND ERROR
?FILE LOCKED ERROR

?WRITE PROTECTED ERROR
?FILES BUSY ERROR

Cause

Volume name given does not
exist.
Subdirectory does not exist.
Non-existent local file name.
Subdirectory contains files, or
specified file is locked.
Diskette is write-protected.
One or more files are open.

Table 5-2. Errors Possible with DELETE.

RENAME
RENAME is used to change the names of volumes, subdirectories,
and local files. RENAME's argument list is composed of the old
pathname, followed by a comma, followed by the new path name. For
example,

)RENAME /Fioppy2/ Animals/Dogs, /Fioppy2/ Animals/Pigs

changes the name of the file Dogs, in the subdirectory Animals of the
diskette whose volume name is Floppy2, to Pigs. If the second
pathname specified indicates a file that already exists, the item is not
renamed, and the

?DUPLICATE PATHNAME ERROR

message is displayed.

Remember that using PREFIX$ reduces the length of the pathname
you must supply.

You cannot use the RENAME statement to create a file or
subdirectory, only to rename an existing one. Use the CREATE
statement to make new files and root directories.

A local filename or subdirectory may not be changed to another
volume name or subdirectory. For example, either

or

)RENAME /Thisdisk!Tweedledee/File1,
/Thisdisk/Tweedledum/File2

)RENAME /Thisdisk/Tweedledee/File1,
/Thatdisk!Tweedledum/File2

will cause a

?BAD PATH ERROR

LOCK and UNLOCK
LOCK prohibits writing to, saving, or deleting the file named as its
argument. Locked files are shown with an asterisk to the left of their
file type when cataloged. Volume names may not be locked, but
subdirectories may be.

A locked file may not be deleted, renamed, changed or saved until it
has been unlocked with the UNLOCK statement. The reserved word
UNLOCK must be followed by the file's name.

To protect all the files on a diskette, a write-protect tab may be placed
over the write-protect cutout on the upper right edge of the diskette.

File Types
Your most useful programs are likely to be those that read from or
write to files. The two types of files that your pr:ograms will be using
are text and data files, described below.

Text files contain only text in the form of characters and strings of
characters. Numeric information stored in text files is automatically
converted into string form as if done by the STR$ function.

A string representing a numeric value to be assigned to a numeric
variable when read from a text file is automatically converted to the
proper form for that variable.

Reading from or writing to a file is referred to as accessing the file. A
single access operation usually affects only a portion of the data or
text within the file being accessed.

The type of a file is determined at the time that the file is created,
either by assignment with a CREATE statement or by the access
method used first after creating the file with an OPEN# statement.
Once the type of a file is determined, it can not be changed except by
deleting the file and then recreating it-and then it's really a different
file even if it has the same name. Statements directly affecting files
are described in the remainder of this chapter.

Opening and Closing Files
Before a file can be accessed it must be opened, and it should be
closed after the user is finished with it. An open file is like an open
box-you can put things into the box, and you can take things out of
the box. Similarly, a closed file is like to a box with a lid on it-you
can't access the box's contents. Apple Business BASIC allows you to
have up to 10 files open at the same time.

OPEN#
OPEN# is used to open files for access, and must precede any file 1/0
statements accessing a given file. The arguments following OPEN#
are a file reference number and the file's pathname. The file reference
number is used in all subsequent 1/0 statements to refer to the file
while it is open. The file reference number can be any arithmetic
expression having a value between 1 and 10, inclusive. OPEN#
examples are given below:

)OPEN #6, Door
)OPEN #4, Window
)OPEN #2, .Console
)OPEN #1, .Printer

If the OPEN# file reference number is followed by the reserved words
AS INPUT, the file is opened as a read-only file and may not be written
to. For example,

)OPEN #2 AS INPUT, Arms

If the OPEN# file reference number is followed by the reserved words
AS OUTPUT, the file is opened as a write-only file and may not be
read from. For example,

)OPEN #1 0 AS OUTPUT, Session

The AS EXTENSION option is a variant of AS OUTPUT, and is used in
sequential access (explained later) to allow PRINT# or WRITE#
statements to append new information to the end of an existing file
without disturbing any data that was put in the file earlier. For
instance,

)OPEN #1 AS EXTENSION, Ladder

Note that no comma follows the file reference number if an AS option
is specified.

If no AS options are specified the file can be both read from and
written to if the file type supports such access. For example, you can
only write to a printer device driver.

If an OPEN# statement contains a file reference number equal to one
presently in use, the first file using that file reference number is
automatically closed.

As a convenience in immediate execution, the pathname may be
entered directly in OPEN statements rather than either as a string
variable or as a literal enclosed by quote marks. For example, in
immediate execution, the statements

)OPEN /Foo/Fighter, Data

and

)OPEN "/Foo/Fighter", Data

are equivalent. In deferred mode, the quotation marks are required.
Not using them results in a

?TYPE MISMATCH

CLOSE and CLOSE#
Before ending program execution, all open files should be closed
with either a CLOSE# or CLOSE statement. Any files closed during
program execution must be reopened before they can be accessed
again. Each time a file is opened, even if it was used earlier in the
same program, BASIC treats it as a new file.

CLOSE# closes the file whose file number is equal to the arithmetic
expression that follows CLOSE#.

CLOSE closes all files that are open when the statement is executed.
All open files are also closed by a LOAD, CLEAR, NEW, or RUN
statement. The CHAIN statement does not close any files.

Accessing Files
Text files and device driver files are accessed with the same set of
BASIC 1/0 statements; INPUT#, PRINT#, and PRINT# USING. Data
files are accessed with a different set of 1/0 statements, described
later.

INPUT#
INPUT# reads a line of text for each variable in its list of variables.
The file to be read from is defined by a file number following the
reserved word INPUT#. If the file number is followed by a comma, the
arithmetic expression following the comma specifies a record
number to begin file access at. Examples of legal INPUT# statements
are given below.

)INPUT# 2; Payment%, Grease$
)INPUT# 8, 34; DG(O), DG(2), DG(4)

INPUT# automatically performs any necessary string to numeric type
conversions (similar to the VAL function), in order to store newly-read
information into any numeric variables in the variable list.

If INPUT# is reading to a numeric variable from a random-access file
and the record being read from is either empty or contains only non­
numeric information an

?TYPE MISMATCH

error is generated.

An INPUT# statement with no variables in the variable list is allowed,
but does nothing.

You may open a directory as you would a text file by specifying the
pathname. INPUT# statements may then access the directory to
return, one line at a time, the same information returned by the
CATALOG statement.

If an INPUT# statement calls for a numeric variable and the file
record accessed does not contain numeric data, a

?TYPE MISMATCH

will occur. If the accessed record contains numeric characters
followed by non-numeric characters in that record, the numbers are
accepted, the other characters are discarded and an

?TYPE MISMATCH

warning message is displayed.

If the file record being read has more fields than the number of
variable entries being requested, an

?EXTRA IGNORED

warning is issued.

OUTPUT#
Normally, BASIC sends all its output, such as error messages,
prompts, and so on to the console. Sometimes you might want to
redirect output to another file to get a record of a program's output,
for example.

OUTPUT# redirects screen output to a specified file. All PRINT, LIST,
TRACE, and CATALOG statement output is sent to the specified file,
but error messages and keyboard input is still echoed to the screen.
The file used for output is specified by its file number (set by an
OPEN# statement) following the reserved word OUTPUT#. For
example,

)OUTPUT #5

Note that INPUT prompt strings will be sent to the file specified in the
OUTPUT# statement, and not to the screen.

If there is no file open with the same file reference
number, the

?FILE NOT OPEN ERROR

message is displayed. If the file specified is not a file
that can accept characters, the message

?TYPE MISMATCH ERROR

is displayed. To resume normal screen output, type

)OUTPUT# 0

and characters will again be displayed on the screen.

The TRACE statement should not be used to debug
programs using the OUTPUT# statement, unless you
want the TRACE-generated line numbers sent to the
file.

PRINT#
PRINT# writes information to files like PRINTwrites
information to the screen. After the file number (and record
number, if included) a list of expressions separated by
commas must follow. For example,

)PRINT# 1; W$(0,0,0), LEFT$(W$(0,0,1))
)PRINT# 10, 4755; A&+24, T&/43, R%

One line of text is written for each expression in the list.
PRINT# automatically performs any necessary numeric to
string type conversions (similar to the STR$ function) in order
to transfer the information from the expressions to the file.

A PRINT# statement in which a specific record number is
given, starts writing information to the file at the beginning of
the specified record.

The SPC specification can be used with PRINT# statements
in the same way it is used with PRINT statements.

Just like PRINT, PRINT# allows commas in place of
semicolons, but if you use commas strange line
breaks appear in the output, because files have no
tab positions. The TAB specification can also be used
as it is in PRINT -but, it too may cause strange
results. As in PRINT, some expressions can be run
together without commas or semicolons. This is not
recommended.

PRINT# USING
The PRINT# USING statement is the same as a PRINT statement with
a USING clause used to control the format of information sent to the
file. Both PRINT and USING are described in detail in the chapter on
CONSOLE 1/0.

Data Files

READ# and WRITE# are used for diskette data file access. Data file
access is much faster than text file access because no data
conversion is required. The advantage of a text file is that it allows
you to use PRINT# and INPUT#, which are usually the most
convenient statements for handling text 1/0.

READ#
READ# gets information from a data file specified by its file number.
An optional record number may be included to specify a particular
record in a random-access file to begin reading. A variable list
following the file number (and optional record number, if included)
defines where to put the information being read. For example,

)READ# 7; Pip1 I Pip2
)READ# 8, 54; Twelve%, Strong&(2)

One line of data is read for each variable in the list. READ#
automatically performs any necessary type conversions as needed for
numeric data. However, type conversions are not automatically
performed between numeric data and string variables (and vice
versa), and an attempt to read a string with a numeric variable (or
vice versa) results in a

?TYPE MISMATCH ERROR

message.

The following table defines the conversion limits of the READ#
statement:

Variable Data Field Type Result

Real Real OK
Integer OK
Long Integer OK; Possible loss of accuracy
String ?TYPE MISMATCH ERROR

Integer Real OK in the range ±32767
Integer OK
Long Integer OK in the range ±32767
String ?TYPE MISMATCH ERROR

Long Integer Real ?OVERFLOW ERROR if greater
than ±E18

Integer OK
Long Integer OK
String ?TYPE MISMATCH ERROR

String Real ?TYPE MISMATCH ERROR
Integer ?TYPE MISMATCH ERROR
Long Integer ?TYPE MISMATCH ERROR
String OK

Table 5-3. READ# Conversion Limits.

The message

?TYPE MISMATCH ERROR

is displayed if you attempt to use the READ# statement with a file
that is not a data file.

If a record number is specified, then the value in the specified record
in the file is assigned to the first variable in the READ# statement.

WRITE#
WRITE# sequentially writes the value of each item in its expression
list to a field in a specified data file. You may optionally follow the file
number with a comma and an arithmetic expression specifying a
record number to begin access at. The list of expressions must follow
the file number (or optional record number), and the expressions in
the list must be separated by commas. For example,

)WRITE# 3; Major%, Minor%, Xlow
)WRITE# 4, 11; Map(1 ,3 ,5,7,9)

One line of data is written for each expression in the list. WRITE#
performs no numeric to string type conversions while transferring
information from the expressions to the file, it just writes a binary
image of numeric data to the file.

If a record number is specified, then the value of the first expression
in the expression list is written to the first field in the specified
record. Otherwise, records are written sequentially.

If a file record lacks enough room for all the fields being written to it,
the extra fields will be written to the next record. Note that writing
any new data to a record will cause the old data in that record to be
lost.

If you try to write a data field to a file that is longer than the file's
record length, an

?OUT OF DATA ERROR

message is displayed.

Note that the usual rules for expression type are in
effect except that an integer is written as an integer
only if an integer variable is specified and is not part
of an expression. For example:

)WRITE# 1 ;N%

writes an integer.

)WRITE# 1 ;N%+ 1

writes a real.

Sequential Access
There are two ways to access text and data files on a disk: sequential
access and random access. Sequential access is like reading a book;
accesses begin at the front of the file and continue on toward the
end. Random access requires that the file be made of equal sized
records, and allows access to be made of any record in any order.
Character devices may not be accessed randomly but block type
devices, such as disks, allow either form of access.

Text Files

Here is an example of a sequential access program:

10 REM Program PrintSequential
20 File$ = "SequentiaiText"
30 CREATE File$, TEXT
40 OPEN# 1 AS OUTPUT, File$
50 FOR X=1 TO 10
60 PRINT# 1; "This is line ";X
70 NEXT X
80 CLOSE# 1
90END

This little program writes both string and numeric values into a
sequential text file.

Line 20 assigns the string "SequentiaiText" to the string variable
FILE$. Line 30 (which is optional) creates a file using the value of
FILE$ as a partial pathname.

Line 30 is optional since even if the file does not exist, the OPEN# in
line 40 would create a new file. In that case, however, you could not
specify the file type explicitly. If a text file named SequentiaiText
already exits on the volume in use, line 30 does not need to be used.
Line 40 opens the file and assigns the number 1 to it as a file
reference number. As long as the file is open, it is referred to as "#1 ".

Lines 50 and 70 define a loop that will execute 10 times. Each time
through the loop, X has a different value: first 1, then 2, and so on up
to 10.

Line 60 writes two values into file #1 each time it executes. The first
value is the string 'This is line" and the second is the numeric value
of X; automatically converted to a string. These two strings are joined
together (because of the semicolon between them) to occupy one
line of text in the file.

Line 80 closes the file. In a larger program, other routines might need
to ac9ess files, and unless closely controlled, problems arise with
attempts to operate with more than 1 0 files open at one time or by
accessing the wrong file.

After the program runs, the contents of the file are:

This is line 1
This is line 2
This is line 3

This is line 10

To see the contents of this file on the screen, you need another
program:

10 REM Program lnputSequential
20 FILE$ = "SequentiaiText"

30 OPEN# 1 AS INPUT, File$
40 ON EOF #1 GOTO 80
50 INPUT# 1; Accept$
60 PRINT Accept$
70GOT050
80CLOSE# 1
90 END

lnputSequential opens the file to read its contents. Each time the
loop in lines 40 through 70 executes, line 50 reads the next line of
text from file #1, and stores it in the string variable Accept$. Then
Line 60 displays the string on the screen.

Data Files

The file SequentiaiText was a text file because of the way it was
accessed. We can use a data file to achieve the same result. The
following program creates a data file and writes some data into it:

10 REM Program WriteSequential
20 File$ = "Sequential Data"
30 CREATE File$, DATA
40 OPEN# 1 AS OUTPUT, File$
50 FOR X=1 TO 10
60 WRITE# 1; "This is line ",X
70 NEXT X
80 CLOSE# 1
90 END

WriteSequential is like the program PrintSequential, but uses
WRITE# instead of PRINT#. WRITE# does not allow the use of
semicolons to separate values that are written to a file. Each WRITE#
sends a complete line (or field) to the file for each variable in its
argument list. WRITE# also does no conversion of numbers to
strings, but places them in a file using the same format as numeric
types are stored in the Apple's memory.

In the data file Sequential Data, every other field contains the string
"This is Line", and the fields in between contain binary coded
numeric values from 1 to 10.

The program below reads data from the file SequentiaiData back into
memory and displays it on the screen:

10 REM Program Read Sequential
20 File$ = "SequentiaiData"
30 OPEN# 1 AS INPUT, File$
40 FOR X=1 TO 10
50 READ# 1; Accept$,1nnum
60 PRINT Accept$; lnnum
70 NEXT X
80 CLOSE#1
90 END

Where the program lnputSequential used INPUT#, ReadSequential
uses READ#. The READ# statement reads the values of two fields
from the file: the first (a string value) is stored in ACCEPT$, the
second (numeric) value is stored in INNUM. In line 60, PRINT displays
the two values as one line using the semicolon.

ReadSequential displays the following on the screen:

This is line 1
This is line 2

This is line 10

In the simple examples given above, either text or data files work
about as well. You will find in most real-world programming that text
files are most convenient for handling string-type data, while numeric
data is best handled with data files.

Remarks
Notice that the programs above with PRINT#, INPUT#, WRITE#, and
READ# statements all used sequential access; we never had to
specify where to begin in the file. PRINT# or WRITE# statements
cause one access for each expression in its expression list, and an
INPUT# or READ# causes one access for each variable in its variable

list. BASIC automatically advances by one data or text item each time
an expression is written, or a variable read, so that the next access to
the file will be positioned correctly.

Sequential Access Rule 1

When a file has been opened, the first access begins
at the beginning of the file. Each subsequent access
begins where the last one left off.

According to Rule 1, each time an existing file is
opened and written to, at least some of the original
content will be written over. If some of the original file
is not written over, where is the end of the file? At the
end of its original content, or the end of the new
content? The answer is that you can't be sure. If the
old content has been fully overwritten, all old content
is lost. If not, a portion of the old contents will remain
after the end of the new contents, and BASIC will not
tell you either way. Moral: don't open an existing file
AS OUTPUT for sequential access. Instead, delete the
old file, then open a new file AS OUTPUT using the
same file reference number. (Before you delete the
old file, be sure you read any information you need
from it.)

If you just want to append information on the end of a file, it can be
opened AS EXTENSION, allowing you to write additional information
beginning at the end of the existing file. This allows you to retain
information previously saved in the file.

Sequential Access Rule 2

When an existing file has been opened AS
EXTENSION, the first access begins at the end of the
file. Each subsequent access begins where the last
one left off.

Random Access
Random-access files are structured as a sequence of equal-sized
records. A record is a sequence of bytes storing data or text. In
random access operation, you specify exactly where each file access
should begin by specifying a record number in the PRINT#, INPUT#,
WRITE#, and READ# statements.

The CREATE statement allows you to specify the record size of a new
file. If you don't specify it, the record size defaults to 512 bytes. You
can never change the record size of an existing file.

Note that in sequential access, the record size is irrelevant; you never
need to think about it. A sequential file may not be successfully
accessed in a random access fashion.

In a data file, the content of a record is organized into fields. Each
field contains either a numeric or string value. Any given field is
always contained wholly within one record, there will be no
overlapping.

In a text file, each record is a series of bytes; each byte containing a
character.

To use random access, you must have a clear idea of how information
will be organized in your file. In a data file, you should usually plan to
have each record contain the same kind of fields: for example, each
data record might contain two real values, an integer, and a string, in
that order. The record size must be large enough to contain all of the
fields you will write in each record. The following table shows how
many bytes are used by each kind of field:

Data Type

integer
real
long integer
string

Bytes Used

3
5
9
string length + 2

For text files, if you should want to use random accessing of the text,
bear in mind that INPUT# always reads one line of text. Therefore
you should usually plan to have each record contain one line. This
means the record size should be at least big enough to contain the
longest line your program will ever write into it. A line requires one
byte for each character in the line, plus one for the return at the end
of the line.

Here are the essential rules of random accessing:

Random Access Rule 1

When a record number is specified in a file 1/0
statement, the access begins at the beginning field of
that record.

Random Access Rule 2

When you overwrite any part of an existing record
using WRITE# (not PRINT#), all of the previous
content of that record is lost. But an existing record
that is not overwritten remains unchanged.

Random Access Rule 3

Data Files: If a READ# statement contains more than
one variable or a WRITE# statement contains more
than one expression, then the access will move from
one field to the next.

Text Files: If a PRINT# statement writes more than one
line, each is placed in the file in the order written,
regardless of record boundaries. If an INPUT#
statement reads more than one line, it assumes that
each one begins where the last one left off, regardless
of record boundaries.

Random Access Rule 4

Data Files: If a field won't fit in the space remaining in
the record, BASIC goes to the beginning of the next
record. But if a field is too big to fit in any record, the

?OUT OF DATA ERROR

message is displayed.

Text Files

You can change the sequential access examples above to random
access, so that when you display the file on the screen, you will
display only the even-numbered lines.

To change program PrintSequential to program PrintRandom, you
must specify a record size in the CREATE statement and a record
number in the PRINT# statement:

10 REM Program PrintRandom
20 CREATE "RandomText", TEXT, 16
30 OPEN# 1 AS OUTPUT, "RandomText"
40 FOR X=1 TO 10
50 PRINT# 1 ,X; "This is line ";X
60 NEXT X
70 CLOSE# 1
SO END

It isn't necessary to specify the record size as 16; it could be bigger.
But the file would contain wasted space if the record size were
bigger than 16. Sixteen bytes is enough to contain the longest string
we will be writing, namely "This is line 10"-15 characters plus one
for the return at the end.

In line 50, X is the record number. Each time through the loop, the
PRINT# statement writes to a different record: first to record 1, then
record 2, and so on, up to record 10.

In every other respect, program PrintRandom is like program
PrintSeq uential.

To change program lnputSequential to program lnputRandom, we
don't need to specify the record size; BASIC stored the record size
with the file when the file was created. When the file is opened, that
information is retreived.

You need to make two changes: a change in the FOR statement, and
a change in the record number in the INPUT# statement.

10 REM Program lnputRandom
20 OPEN# 1 AS INPUT, "RandomText"
30 FORX=2TO 10 STEP 2
40 INPUT# 1 ,X; ACCEPT$
50 PRINT ACCEPT$
60 NEXT X
70 CLOSE# 1
80END

The FOR statement now starts with X=2 and has STEP 2, causing X
to take on the values 2, 4, 6, 8, 10 as the loop repeats five times. In
the INPUT# statement, we specify X as the record number; so the
first time through the loop we access record 2, the second time
record 4, and so on, up to record 10.

When lnputRandom is RUN, it displays the following on the screen:

This is line 2
This is line 4
This is line 6
This is line 8
This is line 10

In the same fashion, program WriteSequential can be changed to a
program to randomly access data files. Try it!

File Functions and Statements
Business BASIC contains statements that allow you to control
program execution according to information contained in files that
your program accesses.

ONEOF#
ON EOF# is used to force BASIC to allow your program to control
what happens if BASIC reads past the end of a file. EOF stands for
End Of File. When ON EOF# is not in effect and BASIC reads past the
end of a file, an

?OUT OF DATA ERROR

message is displayed, and execution halts. ON EOF# is very similar
to the ON ERR statement, except that ON EOF# recognizes only one
error code.

A statement or statement list must follow the reserved word EOF#.
Execution branches to that statement list whenever an

?OUT OF DATA ERROR

occurs, and BASIC does not display an error message or halt
execution. For example,

)100 ON EOF# 1 PRINT "End of file"
)1000 ON EOF# 2 GOTO 2000: IFA<47THEN NEXT X

The statement list is executed as though a GOTO statement had
caused execution to jump there. Unlike ON ERR, you cannot use
RESUME in conjunction with ON EOF# statements.

OFFEOF#
The OFF EOF# statement cancels an ON EOF# statement. After an
OFF EOF# statement has been executed, BASIC resumes displaying
error messages and halting execution when an end of file is reached,
just as it did before the ON EOF# statement was executed. You must
follow the reserved word EOF# with a file reference number to
specify which file's ON EOF# statement should be canceled.

The Reserved Variable EOF
When BASIC encounters an

?OUT OF DATA ERROR

it assigns the file reference number of the file causing the error to the
reserved variable EOF. You can then check the reserved variable EOF
to determine the affected file.

When you use the reserved variable EOF in an ON ... GOTO or
ON ... GOSUB statement, you must enclose EOF in parentheses. For
example,

)ON (EOF) GOTO 1 00,200,300

TYP
TYP is used to determine what type of data will be read from a
particular file on the next access to that file. The argument to the
function can be any arithmetic expression, but its value must specify
a particular file reference number. The number returned by the TYP
function denotes what type of data will next be read from the
specified file. For example,

)ON TYP(3) GOSUB 1000,1200,1400,1600,1800,2000

For a data file, TYP returns the following values:

Value

0
1
2
3
4
5

Meaning

File type indeterminate
Next datum is Real
Next datum is Integer
Next datum is Long Integer
Next datum is String
End of file

For a text file, TYP always returns the value 8. If there are no more
characters in the file, the value returned is 5.

If the type of a file is as yet undetermined (i.e., whether it is a data or
text type) a zero value will be returned for the TYP function.

If the value of the argument ofTYP is not between 1 and 10, the

?ILLEGAL QUANTITY ERROR

message is displayed. If a file with the specified reference number is
not open, the

?FILE NOT OPEN ERROR

message is displayed.

REC
REC returns the current record number of the file specified by the
value of the arithmetic expression following the reserved word REC.

If you use the INPUT# or READ# statements to access the catalog of
a directory, REC returns the number of the line currently being
accessed.

REC has the same error conditions as the TYP function.

File 1/0 Example
Here is an example of file use. Assume that you have inserted a
BASIC diskette named APPLE1 in disk drive 1, and turned on the
power. Assume that there is no initialization file (no HELLO program)
so that no program is run automatically; you just see the prompt
character. Now you type RUN DEMO to load and run a program
called DEMO, designed to make copies of existing files and shown
below.

10 PRINT "Text file copy utility"
20 INPUT "Type input file pathname: ";A$
30 OPEN #1 AS INPUT, A$
40 INPUT "Type output file pathname: ";A$
50 REM Open new output file
60 OPEN #2 AS OUTPUT, A$
70 ON EOF #1 PRINT "Done" : CLOSE : END
80 INPUT #1; A$: PRINT #2; A$: GOTO 80

Line 10 displays a message on the screen. Line 20 displays a prompt
and then waits for you to enter a pathname. The line entered must be
a legal pathname or an error message results, and the program halts.
Line 30 opens the named file, to be referenced hereafter as #1. Line
40 asks for another pathname; and line 60 opens the file for output,
assigning to it the file reference #2. Line 80 performs the actual
copying. Line 70 will be executed only when the end of the input file
has been reached to end the program. Until line 70 is executed, line
80 reads in lines from the input file, and writes them to the output file.

Recall that when you boot your Apple, the volume name of the
diskette in the built-in disk drive is stored in the reserved variable
PREFIX$. This means that a valid pathname can be as little as the
name of the file (assuming that there are no subdirectories on the
diskette). So responding simply Afile and Bfile to the program
prompts would cause /Apple1/Afile to be duplicated to a new file
named /Apple1/Bfile. Remember that not using a slash before a
pathname causes the contents of PREFIX$ to be added to the
beginning of the pathname.

This program can be used to print a file by responding Afile and
.PRINTER, assuming that a printer is properly connected.
Responding .CONSOLE and I Apple1/Text will take input directly from
the Apple's keyboard and write it to the new file /Apple1/Text created
by the program.

Note that in the last case, the program will not terminate normally,
because these block devices (.CONSOLE, .PRINTER) have no end of
file! In the next-to-last case, .PRINTER is used for output, so EOF will
be triggered when the end of input file is reached. Use CONTROL-C
or RESET to end the program.

6
External Routines

Introduction
Apple Business BASIC allows external subroutines (assembly­
language procedures or functions that are not part of BASIC) to be
loaded and executed from BASIC programs. You can use both
external subroutines that you write, and those included with your
Apple. For example, there is a library of special purpose subroutines
for displaying graphics supplied with Apple Business BASIC,
described in the appendix on the invokable Graphics Module, that
can be used by your programs.

If you catalog your Business BASIC master diskette, you will see
some files with the extension ".I NV". These are external routines.
There are two other groups of related files that you should be aware
of, both having the same name as the external routines files: One
with the extension ".DOC" (for documentation), and one with no
extension, which are demonstration programs.

If you run a program with the .DOC extension, it will describe the use
of its associated external routines. The program file with no extension
demonstrates program use of its associated external routine.

A subroutine is a separate part of a program called by one or
(usually) several other parts of the program to perform a specialized
or frequently-repeated task. A subroutine may have a list of
arguments enclosed in parentheses following its name, either
variables, pointers, or expressions. There are two types of external
subroutines: procedures and functions. A function returns a value,
while a procedure does not.

An external subroutine uses its argument list to communicate with
the calling program as to what information is available for its use,
what is to be operated on, or where it should leave the results of its
operation for the use of the calling program.

Since internal BASIC routines (called with a GOSUB statement) have
access to constants and variables used by the program in memory,
they don't require the passing of arguments that external routines
require.

Four BASIC statements (INVOKE, PERFORM, EXFN. and EXFN%.)
are needed to use external subroutines. These statements are used to
load a file containing external subroutines into memory from disk
files and execute them at the BASIC program's demand.

The INVOKE statement loads external subroutines and, depending on
the subroutine's type, either the PERFORM, EXFN., or EXFN%.
statements execute it. These statements are described below.

INVOKE
INVOKE loads specified assembly-language subroutines into memory.
For example, to load a subroutine named FastPrint, enter

)INVOKE FastPrint

You may load as many subroutines at once as you like by separating
each file's path name by commas:

)INVOKE FP1, FP2, /Fioppy2/Subr/FP3

After loading, subroutines are executed from your BASIC program
with the PERFORM, EXFN%. , or EXFN. statements described below.

Executing INVOKE effectively erases any external subroutines
previously loaded by other INVOKE statements and returns any
unused memory to BASIC.

If you don't need your external subroutines any longer
and want to make the memory available to BASIC,
execute an INVOKE statement with no pathnames
following it. Only the invoked subroutines are
removed from memory, variables defined in BASIC are
not touched, nor is the main program altered.

If there is not enough memory to load an invoked file, an

?OUT OF MEMORY ERROR

occurs.

If the file loaded is not an executable assembly language subroutine,
a

?TYPE MISMATCH ERROR

message results. If the file is not found on the named diskette, a

?FILE NOT FOUND ERROR

message results.

PERFORM
PERFORM executes a specified assembly language procedure
previously loaded by an INVOKE Statement. If an argument list is
present (enclosed in parentheses after the procedure name) each
argument is evaluated and passed to the procedure before execution.

To pass real numbers or the values of single variables, just include
them in the argument list as an expression (for an explanation of
expressions see the section EXPRESSIONS AND STATEMENTS in the
chapter Tools of Your Trade).

To pass integer values, precede the expression with a percent (%)
sign. If you want to pass a long integer value, precede the value with
an ampersand (&). For example,

PERFORM StrangeRites(&Pennies, %Accountants)

If no leading character is supplied, real number values will be sent.

To pass addresses of variables, precede the variable name with an at
sign (@). For example,

)PERFORM Errproc(R, 13-6,@0)

passes the value of variable R, the value 7, and the address of the
variable D to the procedure named Errproc.

If you want your subroutine to operate on a string in memory, using
the @ sign gives an address pointing to the string's descriptor in
memory. The subroutine should be designed to act on the string from
that point on.

Values passed to an external subroutine are pushed on the system
stack in memory. When the routine is executed, it must read the
values from the stack.

Addresses of variables to be passed to an external subroutine are
pushed on the system stack by BASIC only if the variable name is
preceded with an@ sign. It is the responsibility of the subroutine to
distinguish between variable values and addresses. Only single
variables can be preceded by an@ sign in this manner; using an
expression is not legal.

Let's say we have two subroutines that each take one argument. The
first one, MyProc, takes the value of a real expression. The other one,
MyOtherProc takes the address of a real variable. Various legal and
illegal combinations of arguments to these subroutines are:

)PERFORM MyProc(4.5): REM Legal: A simple expression.
)PERFORM MyProc(NUMS) : REM Value of NUMS is passed
)PERFORM MyProc(NUMS+4.5) : REM NUMS+4.5 is legal
expression.
)PERFORM MyOtherProc(@NUMS) : REM The address of
NUMS is passed.
)PERFORM MyOtherProc(@NUMS+4.5) : REM Illegal
operation
)PERFORM MyOtherProc(@4.5) : REM Illegal address

Arguments that are variable addresses (as opposed to
variable names or values), must be preceded by the
@sign; otherwise the executed procedure will be
passed the value of the variable instead of its
address.

If the number of bytes of the arguments supplied to a procedure does
not match the number of bytes of the arguments that the procedure
expects to be given, a

?TYPE MISMATCH ERROR

message is given. All BASIC knows about the argument list to be
passed to the procedure is how many bytes of memory the evaluated
argument list should fill.

EXFN.
EXFN. executes an external assembly language function that returns
a real value and has been loaded by an INVOKE statement. For
example, suppose you have a function named CalcX that performs
some operation on a supplied argument and returns the result of the
operation to the caller. You could execute CalcX in immediate mode
with the following statement:

)PRINT EXFN.CalcX(2)*32/256

The value returned by CalcX is multiplied by the expression 32/256.
Remember that the argument passed to CalcX is contained within the
parentheses following the function's name.

The rules for passing arguments to external procedures also apply to
external functions. To pass the address of a variable, precede its
name with an@ sign. Values of variables or numbers to be passed
must be given in expressions.

Like PERFORM, if the number of bytes of argument that you supply
differs from the number of bytes the function expects, a

?TYPE MISMATCH ERROR

message is displayed.

Also like PERFORM, an

?UNDEFINED FUNCTION ERROR

occurs if the function named was not part of a currently invoked file.

Remember, if you want to pass an integer argument, you must
precede the expression being passed with a percent sign.

EXFN%
EXFN%. is identical to EXFN. except that the assembly language
function involved returns an integer instead of a real value. To pass
the address of a variable, precede its name with an@ sign. Values of
variables or numbers to be passed must be given in the form of
expressions.

	Apple Business BASIC Reference Manual - Volume 1

	Table of Contents
	Preface

	Introduction to Apple Business BASIC

	Introduction

	Controlling Text on the Screen

	System and Utility Statements

	Loading and Saving Programs

	Starting and Stopping Programs

	Handling Large Programs

	Debugging Programs

	Special Keys

	Automatic Execution

	Tools of Your Trade

	Introduction

	Variable Types

	Reserved Words and Variables

	Arrays

	Statements

	Expressions

	Functions

	Business Basic Functions

	Apple Business BASIC I/O

	Introduction

	Displaying Text on the Screen

	Entering Data

	Storing
 Data Within Your Program
	Formatting Information

	Controlling Program Execution

	Introduction

	Assignment Statements

	Remark Statements

	Branching

	Looping

	Subroutines

	Computed Branching

	Handling Errors

	Error-Recovery Strategies

	File I/O

	Introduction

	Filenames

	Creating Files

	Manipulating Files

	File Types

	Opening and Closing Files

	Accessing Files

	Data Files

	File Functions and Statements

	File I/O Example

	External Routines

	Introduction

